An explainable unsupervised learning approach for anomaly detection on corneal in vivo confocal microscopy images
BackgroundIn vivo confocal microscopy (IVCM) is a crucial imaging modality for assessing corneal diseases, yet distinguishing pathological features from normal variations remains challenging due to the complex multi-layered corneal structure. Existing anomaly detection methods often struggle to gene...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-06-01
|
| Series: | Frontiers in Bioengineering and Biotechnology |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fbioe.2025.1576513/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!