Marshall-Based Thermal Performance Analysis of Conventional and Polymer-Modified Asphalt Binders

Iraq’s extreme summer temperatures pose critical challenges to pavement durability, as conventional asphalt mixtures often fail under prolonged thermal stress. This paper provides a comparative evaluation of the high-temperature performance of unmodified (40/50 penetration grade) and polymer-modifie...

Full description

Saved in:
Bibliographic Details
Main Authors: Mustafa Mohammed Jaleel, Mustafa Albdairi, Ali Almusawi
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Construction Materials
Subjects:
Online Access:https://www.mdpi.com/2673-7108/5/2/40
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Iraq’s extreme summer temperatures pose critical challenges to pavement durability, as conventional asphalt mixtures often fail under prolonged thermal stress. This paper provides a comparative evaluation of the high-temperature performance of unmodified (40/50 penetration grade) and polymer-modified (PG 76-10) asphalt mixtures for the asphalt course layer. Marshall stability, flow, and stiffness were measured at elevated temperatures of 60 °C, 65 °C, 70 °C, and 75 °C after short-term (30 min) and extended (24 h) conditioning. Results show that while both mixtures experienced performance degradation as the temperature increased, the polymer-modified mixture consistently exhibited superior thermal resistance, retaining approximately 9% higher stability and 28% higher stiffness, and displaying 18% lower flow deformation at 75 °C compared to the unmodified mixture. Stability degradation rate (SDR), stiffness degradation rate (SiDR), and flow increase rate (FIR) analyses further confirmed the enhanced resilience of PG 76-10, showing nearly 39% lower FIR under thermal stress. Importantly, PG 76-10 maintained performance within specification thresholds under all tested conditions, unlike the conventional 40/50 mixture. These findings emphasize the necessity of adapting mix design standards to regional climatic realities and support the broader adoption of polymer-modified asphalt binders to enhance pavement service life in hot-climate regions like Iraq.
ISSN:2673-7108