Predictive value of the stone-free rate after percutaneous nephrolithotomy based on multiple machine learning models
PurposeThis study aimed to develop three types of machine learning (ML) models based on gradient boosting decision tree (GBDT), random forest (RF), and extreme gradient boosting (XGBoost) to explore their predictive value for the stone-free rate after percutaneous nephrolithotomy (PCNL).Patients and...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2025-08-01
|
| Series: | Frontiers in Medicine |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fmed.2025.1559613/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Be the first to leave a comment!