Bit Error Rate of Multi-Gaussian Correlated Asymmetric Bessel Beam Through Turbulent Ocean
We investigate the underwater propagation of multi-Gaussian correlated asymmetric Bessel beam with partial coherence in the condition of quadrature amplitude modulation. The oceanic turbulence optical power spectrum is used to characterize turbulence effects under variable temperature and salinity....
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-03-01
|
| Series: | Photonics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2304-6732/12/3/238 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | We investigate the underwater propagation of multi-Gaussian correlated asymmetric Bessel beam with partial coherence in the condition of quadrature amplitude modulation. The oceanic turbulence optical power spectrum is used to characterize turbulence effects under variable temperature and salinity. Based on the derivation of orbital angular momentum mode distribution, the theoretical model of bit error rate (BER) is constructed. Numerical analyses show that the low-temperature oceanic channel is more beneficial to BER reduction than the low-salinity channel. Due to the better resistance to turbulence, low-order modulation is superior in BER performance. As for beam optimization, the increments in wavelength and source coherence width, or the decrements of topological charge and asymmetry factor, help to obtain a lower BER. The research is instructive for the construction of underwater transmission links based on vortex beams. |
|---|---|
| ISSN: | 2304-6732 |