Numerical Study of the Energy-Saving Effect of the Gate Rudder System

Energy-saving device (ESD) plays an important role in mitigating the emission of greenhouse gases in ship industry. It is necessary to study a promising ESD, a gate rudder, for its great potential in promoting energy efficiency. In the present study, ship resistance and self-propulsion simulations w...

Full description

Saved in:
Bibliographic Details
Main Authors: Hujia Cui, Donglei Zhang, Yuan Kong, Xianzhou Wang
Format: Article
Language:English
Published: MDPI AG 2025-05-01
Series:Journal of Marine Science and Engineering
Subjects:
Online Access:https://www.mdpi.com/2077-1312/13/5/968
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Energy-saving device (ESD) plays an important role in mitigating the emission of greenhouse gases in ship industry. It is necessary to study a promising ESD, a gate rudder, for its great potential in promoting energy efficiency. In the present study, ship resistance and self-propulsion simulations were conducted to investigate the energy-saving effects of gate rudder using a viscous in-house CFD solver. First, verification and validation studies were performed to estimate the accuracy and reliability of the numerical method and the results are in good agreement with experimental data. Afterward, resistance and self-propulsion simulations of a crude carrier equipped with the conventional rudder and the gate rudder were carried out respectively. Ship resistance and self-propulsion characteristics with different sailing velocities and propeller revolution rates were compared to study the energy-saving ability of the gate rudder as well as its effects on ship hydrodynamic performance. The results indicate that the gate rudder can greatly optimize the energy efficiency of the ship. Meantime, the ship equipped with the gate rudder shows better resistance and propulsion performance in a self-propelled state.
ISSN:2077-1312