Four Different Ulam-Type Stability for Implicit Second-Order Fractional Integro-Differential Equation with M-Point Boundary Conditions
In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem. Moreover, in the paper we establish the four different varieties of Ulam stability (Hy...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-01-01
|
| Series: | Mathematics |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2227-7390/13/1/157 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | In this paper, we discuss the existence and uniqueness of a solution for the implicit two-order fractional integro-differential equation with m-point boundary conditions by applying the Banach fixed point theorem. Moreover, in the paper we establish the four different varieties of Ulam stability (Hyers–Ulam stability, generalized Hyers–Ulam stability, Hyers–Ulam-Rassias stability, and generalized Hyers–Ulam–Rassias stability) for the given problem. |
|---|---|
| ISSN: | 2227-7390 |