Event-Based State Estimation for Networked Singularly Perturbed Complex Networks
This paper deals with the multievent-triggering-based state estimation for a class of discrete-time networked singularly perturbed complex networks (SPCNs). A small singularly perturbed scalar is adopted to establish a discrete-time SPCNs model. To reduce the communication burdens, the data transmis...
Saved in:
Main Author: | |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2022-01-01
|
Series: | Complexity |
Online Access: | http://dx.doi.org/10.1155/2022/6122921 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | This paper deals with the multievent-triggering-based state estimation for a class of discrete-time networked singularly perturbed complex networks (SPCNs). A small singularly perturbed scalar is adopted to establish a discrete-time SPCNs model. To reduce the communication burdens, the data transmission between the sensor and the estimator is managed by a multievent generator function. Depending on the singularly-perturbed-based Lyapunov theory, a sufficient condition is constructed to guarantee that the estimation error is exponentially ultimately bounded in the mean square. Finally, the validity of the developed result is demonstrated by a simulation example. |
---|---|
ISSN: | 1099-0526 |