Nonlinear Jordan Derivable Mappings of Generalized Matrix Algebras by Lie Product Square-Zero Elements
The aim of the paper is to give a description of nonlinear Jordan derivable mappings of a certain class of generalized matrix algebras by Lie product square-zero elements. We prove that under certain conditions, a nonlinear Jordan derivable mapping Δ of a generalized matrix algebra by Lie product sq...
Saved in:
| Main Authors: | , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Wiley
2021-01-01
|
| Series: | Journal of Mathematics |
| Online Access: | http://dx.doi.org/10.1155/2021/2065425 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | The aim of the paper is to give a description of nonlinear Jordan derivable mappings of a certain class of generalized matrix algebras by Lie product square-zero elements. We prove that under certain conditions, a nonlinear Jordan derivable mapping Δ of a generalized matrix algebra by Lie product square-zero elements is a sum of an additive derivation δ and an additive antiderivation f. Moreover, δ and f are uniquely determined. |
|---|---|
| ISSN: | 2314-4629 2314-4785 |