Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators

Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve...

Full description

Saved in:
Bibliographic Details
Main Authors: Bhagwat R. Yewale, Deepak B. Pachpatte, Tariq A. Aljaaidi
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Journal of Function Spaces
Online Access:http://dx.doi.org/10.1155/2022/3966177
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849408659221643264
author Bhagwat R. Yewale
Deepak B. Pachpatte
Tariq A. Aljaaidi
author_facet Bhagwat R. Yewale
Deepak B. Pachpatte
Tariq A. Aljaaidi
author_sort Bhagwat R. Yewale
collection DOAJ
description Expanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,ψ-proportional fractional integral operators. Moreover, we present some special cases.
format Article
id doaj-art-7bc44c417c444909a7ce4c14e25d17c2
institution Kabale University
issn 2314-8888
language English
publishDate 2022-01-01
publisher Wiley
record_format Article
series Journal of Function Spaces
spelling doaj-art-7bc44c417c444909a7ce4c14e25d17c22025-08-20T03:35:44ZengWileyJournal of Function Spaces2314-88882022-01-01202210.1155/2022/3966177Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral OperatorsBhagwat R. Yewale0Deepak B. Pachpatte1Tariq A. Aljaaidi2Department of MathematicsDepartment of MathematicsDept. of MathematicsExpanding the analytical aspect of mathematics enables researchers to study more cosmic phenomena, especially with regard to the applied sciences related to fractional calculus. In the present paper, we establish some Chebyshev-type inequalities in the case synchronous functions. In order to achieve our goals, we use k,ψ-proportional fractional integral operators. Moreover, we present some special cases.http://dx.doi.org/10.1155/2022/3966177
spellingShingle Bhagwat R. Yewale
Deepak B. Pachpatte
Tariq A. Aljaaidi
Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
Journal of Function Spaces
title Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
title_full Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
title_fullStr Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
title_full_unstemmed Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
title_short Chebyshev-Type Inequalities Involving (k,ψ)-Proportional Fractional Integral Operators
title_sort chebyshev type inequalities involving k ψ proportional fractional integral operators
url http://dx.doi.org/10.1155/2022/3966177
work_keys_str_mv AT bhagwatryewale chebyshevtypeinequalitiesinvolvingkpsproportionalfractionalintegraloperators
AT deepakbpachpatte chebyshevtypeinequalitiesinvolvingkpsproportionalfractionalintegraloperators
AT tariqaaljaaidi chebyshevtypeinequalitiesinvolvingkpsproportionalfractionalintegraloperators