Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection

Heatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and...

Full description

Saved in:
Bibliographic Details
Main Authors: J. Pérez-Aracil, C. Peláez-Rodríguez, Ronan McAdam, Antonello Squintu, Cosmin M. Marina, Eugenio Lorente-Ramos, Niklas Luther, Verónica Torralba, Enrico Scoccimarro, Leone Cavicchia, Matteo Giuliani, Eduardo Zorita, Felicitas Hansen, David Barriopedro, Ricardo García-Herrera, Pedro A. Gutiérrez, Jürg Luterbacher, Elena Xoplaki, Andrea Castelletti, S. Salcedo-Sanz
Format: Article
Language:English
Published: Elsevier 2025-09-01
Series:Weather and Climate Extremes
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S2212094725000507
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849233852557426688
author J. Pérez-Aracil
C. Peláez-Rodríguez
Ronan McAdam
Antonello Squintu
Cosmin M. Marina
Eugenio Lorente-Ramos
Niklas Luther
Verónica Torralba
Enrico Scoccimarro
Leone Cavicchia
Matteo Giuliani
Eduardo Zorita
Felicitas Hansen
David Barriopedro
Ricardo García-Herrera
Pedro A. Gutiérrez
Jürg Luterbacher
Elena Xoplaki
Andrea Castelletti
S. Salcedo-Sanz
author_facet J. Pérez-Aracil
C. Peláez-Rodríguez
Ronan McAdam
Antonello Squintu
Cosmin M. Marina
Eugenio Lorente-Ramos
Niklas Luther
Verónica Torralba
Enrico Scoccimarro
Leone Cavicchia
Matteo Giuliani
Eduardo Zorita
Felicitas Hansen
David Barriopedro
Ricardo García-Herrera
Pedro A. Gutiérrez
Jürg Luterbacher
Elena Xoplaki
Andrea Castelletti
S. Salcedo-Sanz
author_sort J. Pérez-Aracil
collection DOAJ
description Heatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and dynamical models. This work presents a general method for driver identification in extreme climate events. A novel framework named Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS) is proposed to identify key immediate (short-term) HW drivers by combining clustering algorithms with an ensemble evolutionary algorithm. The framework analyzes spatio-temporal data, reduces dimensionality by grouping similar geographical grid cells for each variable, and develops driver selection in spatial and temporal domains, identifying the best time lags between predictive variables and HW occurrences. The proposed method has been applied to analyze HWs in the Adda river basin in Italy. The approach effectively identifies significant variables influencing HWs in this region. This research can potentially enhance our understanding of HW drivers and predictability.
format Article
id doaj-art-7b78cd39de08462c95ed3f9f328b5cd1
institution Kabale University
issn 2212-0947
language English
publishDate 2025-09-01
publisher Elsevier
record_format Article
series Weather and Climate Extremes
spelling doaj-art-7b78cd39de08462c95ed3f9f328b5cd12025-08-20T04:03:22ZengElsevierWeather and Climate Extremes2212-09472025-09-014910079210.1016/j.wace.2025.100792Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detectionJ. Pérez-Aracil0C. Peláez-Rodríguez1Ronan McAdam2Antonello Squintu3Cosmin M. Marina4Eugenio Lorente-Ramos5Niklas Luther6Verónica Torralba7Enrico Scoccimarro8Leone Cavicchia9Matteo Giuliani10Eduardo Zorita11Felicitas Hansen12David Barriopedro13Ricardo García-Herrera14Pedro A. Gutiérrez15Jürg Luterbacher16Elena Xoplaki17Andrea Castelletti18S. Salcedo-Sanz19Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, Spain; Programa de doctorado en Computación Avanzada, Energía y Plasmas, Universidad de Córdoba, Córdoba, Spain; Corresponding author.Department of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, SpainCMCC Foundation - Euro-Mediterranean Center on Climate Change, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, ItalyDepartment of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, SpainDepartment of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, SpainDepartment of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University Giessen, Giessen, GermanyBarcelona Supercomputing Center (BSC), Barcelona, SpainCMCC Foundation - Euro-Mediterranean Center on Climate Change, ItalyCMCC Foundation - Euro-Mediterranean Center on Climate Change, ItalyDepartment of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, ItalyHelmholtz-Zentrum Hereon, Hamburg, GermanyHelmholtz-Zentrum Hereon, Hamburg, GermanyInstituto de Geociencias (IGEO), Consejo Superior de Investigaciones Científicas–Universidad Complutense de Madrid, Madrid, SpainDepartamento de Física de la Tierra y Astrofísica, Facultad de Ciencias Físicas, UCM, Madrid, SpainDepartamento de Ciencia de la Computación e Inteligencia Artificial, Universidad de Córdoba, Córdoba, SpainDepartment of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University Giessen, Giessen, GermanyCMCC Foundation - Euro-Mediterranean Center on Climate Change, Italy; Department of Geography, Climatology, Climate Dynamics and Climate Change, Justus Liebig University Giessen, Giessen, GermanyDepartment of Electronics, Information, and Bioengineering, Politecnico di Milano, Milano, Italy; RFF-CMCC European Institute on Economics and the Environment, Euro-Mediterranean Center on Climate Change, Milano, ItalyDepartment of Signal Processing and Communications, Universidad de Alcalá, Alcalá de Henares, 28805, SpainHeatwaves (HWs) are extreme atmospheric events that produce significant societal and environmental impacts. Predicting these extreme events remains challenging, as their complex interactions with large-scale atmospheric and climatic variables are difficult to capture with traditional statistical and dynamical models. This work presents a general method for driver identification in extreme climate events. A novel framework named Spatio-Temporal Cluster-Optimized Feature Selection (STCO-FS) is proposed to identify key immediate (short-term) HW drivers by combining clustering algorithms with an ensemble evolutionary algorithm. The framework analyzes spatio-temporal data, reduces dimensionality by grouping similar geographical grid cells for each variable, and develops driver selection in spatial and temporal domains, identifying the best time lags between predictive variables and HW occurrences. The proposed method has been applied to analyze HWs in the Adda river basin in Italy. The approach effectively identifies significant variables influencing HWs in this region. This research can potentially enhance our understanding of HW drivers and predictability.http://www.sciencedirect.com/science/article/pii/S2212094725000507HeatwavesSpatio-temporal optimizationLarge-scale driversCluster-based feature selectionMulti-method ensemblesOptimization
spellingShingle J. Pérez-Aracil
C. Peláez-Rodríguez
Ronan McAdam
Antonello Squintu
Cosmin M. Marina
Eugenio Lorente-Ramos
Niklas Luther
Verónica Torralba
Enrico Scoccimarro
Leone Cavicchia
Matteo Giuliani
Eduardo Zorita
Felicitas Hansen
David Barriopedro
Ricardo García-Herrera
Pedro A. Gutiérrez
Jürg Luterbacher
Elena Xoplaki
Andrea Castelletti
S. Salcedo-Sanz
Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
Weather and Climate Extremes
Heatwaves
Spatio-temporal optimization
Large-scale drivers
Cluster-based feature selection
Multi-method ensembles
Optimization
title Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
title_full Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
title_fullStr Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
title_full_unstemmed Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
title_short Identifying key drivers of heatwaves: A novel spatio-temporal framework for extreme event detection
title_sort identifying key drivers of heatwaves a novel spatio temporal framework for extreme event detection
topic Heatwaves
Spatio-temporal optimization
Large-scale drivers
Cluster-based feature selection
Multi-method ensembles
Optimization
url http://www.sciencedirect.com/science/article/pii/S2212094725000507
work_keys_str_mv AT jperezaracil identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT cpelaezrodriguez identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT ronanmcadam identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT antonellosquintu identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT cosminmmarina identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT eugeniolorenteramos identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT niklasluther identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT veronicatorralba identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT enricoscoccimarro identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT leonecavicchia identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT matteogiuliani identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT eduardozorita identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT felicitashansen identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT davidbarriopedro identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT ricardogarciaherrera identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT pedroagutierrez identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT jurgluterbacher identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT elenaxoplaki identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT andreacastelletti identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection
AT ssalcedosanz identifyingkeydriversofheatwavesanovelspatiotemporalframeworkforextremeeventdetection