SDES-YOLO: A high-precision and lightweight model for fall detection in complex environments

Abstract Falling is an emergency situation that can result in serious injury or even death, especially in the absence of immediate assistance. Therefore, developing a model that can accurately and promptly detect falls is crucial for enhancing quality of life and safety. In the field of object detec...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiangqian Huang, Xiaoming Li, Limengzi Yuan, Zhao Jiang, Hongwei Jin, Wanghao Wu, Ru Cai, Meilian Zheng, Hongpeng Bai
Format: Article
Language:English
Published: Nature Portfolio 2025-01-01
Series:Scientific Reports
Subjects:
Online Access:https://doi.org/10.1038/s41598-025-86593-9
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Falling is an emergency situation that can result in serious injury or even death, especially in the absence of immediate assistance. Therefore, developing a model that can accurately and promptly detect falls is crucial for enhancing quality of life and safety. In the field of object detection, while YOLOv8 has recently made notable strides in detection accuracy and speed, it still faces challenges in detecting falls due to variations in lighting, occlusions, and complex human postures. To address these issues, this study proposes the SDES-YOLO model, an improvement based on YOLOv8. By incorporating a multi-scale feature extraction pyramid (SDFP), occlusion-aware attention mechanism (SEAM), an edge and spatial information fusion module (ES3), and a WIoU-Shape loss function, the SDES-YOLO model significantly enhances fall detection performance in complex scenarios. With only 2.9M parameters and 7.2 GFLOPs of computation, SDES-YOLO achieves an mAP@0.5 of 85.1%, representing a 3.41% improvement over YOLOv8n, while reducing parameter count and computation by 1.33% and 11.11%, respectively. These results indicate that SDES-YOLO successfully combines efficiency and precision in fall detection. Through these innovations, SDES-YOLO not only improves detection accuracy but also optimizes computational efficiency, making it effective even in resource-constrained environments.
ISSN:2045-2322