Bridging the gap between R and Python in bulk transcriptomic data analysis with InMoose
Abstract We introduce InMoose, an open-source Python environment aimed at omic data analysis. We illustrate its capabilities for bulk transcriptomic data analysis. Due to its wide adoption, Python has grown as a de facto standard in fields increasingly important for bioinformatic pipelines, such as...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Nature Portfolio
2025-05-01
|
| Series: | Scientific Reports |
| Online Access: | https://doi.org/10.1038/s41598-025-03376-y |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Abstract We introduce InMoose, an open-source Python environment aimed at omic data analysis. We illustrate its capabilities for bulk transcriptomic data analysis. Due to its wide adoption, Python has grown as a de facto standard in fields increasingly important for bioinformatic pipelines, such as data science, machine learning, or artificial intelligence (AI). As a general-purpose language, Python is also recognized for its versatility and scalability. InMoose aims at bringing state-of-the-art tools, historically written in R, to the Python ecosystem. InMoose focuses on providing drop-in replacements for R tools, to ensure consistency and reproducibility between R-based and Python-based pipelines. The first development phase has focused on bulk transcriptomic data, with current capabilities encompassing data simulation, batch effect correction, and differential analysis and meta-analysis. |
|---|---|
| ISSN: | 2045-2322 |