Towards an intelligent energy conservation approach for context-aware systems in smart environments
A smart personal space is a context-aware system that recognizes situations using contextual data. A user interacts within the personal space using smart devices that are mobile, and run-on batteries that have limited power. This paper proposes a Power-Constrained Context-Aware System (PCCA) that us...
Saved in:
| Main Authors: | , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Frontiers Media S.A.
2024-12-01
|
| Series: | Frontiers in Computer Science |
| Subjects: | |
| Online Access: | https://www.frontiersin.org/articles/10.3389/fcomp.2024.1525382/full |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | A smart personal space is a context-aware system that recognizes situations using contextual data. A user interacts within the personal space using smart devices that are mobile, and run-on batteries that have limited power. This paper proposes a Power-Constrained Context-Aware System (PCCA) that uses Markov Chain-based pre-classification to predict context change and defer context processing to conserve energy in an intelligent way. A new Markov Chain Module is added that creates a Markov Chain using history information. This enables PCCA to predict context change for the next observation. The results show that PCCA consumes 37% less power than a context-aware system. |
|---|---|
| ISSN: | 2624-9898 |