PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy

As demonstrated with the Sloan Digital Sky Survey (SDSS), Pan-STARRS, and most recently with Gaia data, broadband near-UV to near-IR stellar photometry can be used to estimate distance, metallicity, and interstellar dust extinction along the line of sight for stars in the Galaxy. Anticipating photom...

Full description

Saved in:
Bibliographic Details
Main Authors: Lovro Palaversa, Željko Ivezić, Neven Caplar, Karlo Mrakovčić, Bob Abel, Oleksandra Razim, Filip Matković, Connor Yablonski, Toni Šarić, Tomislav Jurkić, Sandro Campos, Melissa DeLucchi, Derek Jones, Konstantin Malanchev, Alex I. Malz, Sean McGuire, Mario Jurić
Format: Article
Language:English
Published: IOP Publishing 2025-01-01
Series:The Astronomical Journal
Subjects:
Online Access:https://doi.org/10.3847/1538-3881/ada3c2
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832542179210297344
author Lovro Palaversa
Željko Ivezić
Neven Caplar
Karlo Mrakovčić
Bob Abel
Oleksandra Razim
Filip Matković
Connor Yablonski
Toni Šarić
Tomislav Jurkić
Sandro Campos
Melissa DeLucchi
Derek Jones
Konstantin Malanchev
Alex I. Malz
Sean McGuire
Mario Jurić
author_facet Lovro Palaversa
Željko Ivezić
Neven Caplar
Karlo Mrakovčić
Bob Abel
Oleksandra Razim
Filip Matković
Connor Yablonski
Toni Šarić
Tomislav Jurkić
Sandro Campos
Melissa DeLucchi
Derek Jones
Konstantin Malanchev
Alex I. Malz
Sean McGuire
Mario Jurić
author_sort Lovro Palaversa
collection DOAJ
description As demonstrated with the Sloan Digital Sky Survey (SDSS), Pan-STARRS, and most recently with Gaia data, broadband near-UV to near-IR stellar photometry can be used to estimate distance, metallicity, and interstellar dust extinction along the line of sight for stars in the Galaxy. Anticipating photometric catalogs with tens of billions of stars from Rubin's Legacy Survey of Space and Time (LSST), we present a Bayesian model and pipeline that build on previous work and can handle LSST-sized datasets. Likelihood computations utilize MIST/Dartmouth isochrones and priors are derived from TRILEGAL-based simulated LSST catalogs from P. Dal Tio et al. The computation speed is about 10 ms per star on a single core for both optimized grid search and Markov Chain Monte Carlo methods; we show in a companion paper by K. Mrakovčić et al. how to utilize neural networks to accelerate this performance by up to an order of magnitude. We validate our pipeline, named PhotoD (in analogy with photo- z , photometric redshifts of galaxies) using both simulated catalogs and SDSS, DECam, and Gaia photometry. We intend to make LSST-based value-added PhotoD catalogs publicly available via the Rubin Science Platform with every LSST data release.
format Article
id doaj-art-7a3d1a2b3e44417b98b6086ecef378ed
institution Kabale University
issn 1538-3881
language English
publishDate 2025-01-01
publisher IOP Publishing
record_format Article
series The Astronomical Journal
spelling doaj-art-7a3d1a2b3e44417b98b6086ecef378ed2025-02-04T08:25:50ZengIOP PublishingThe Astronomical Journal1538-38812025-01-01169311910.3847/1538-3881/ada3c2PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the GalaxyLovro Palaversa0https://orcid.org/0000-0003-3710-0331Željko Ivezić1https://orcid.org/0000-0001-5250-2633Neven Caplar2https://orcid.org/0000-0003-3287-5250Karlo Mrakovčić3https://orcid.org/0009-0009-8154-3827Bob Abel4https://orcid.org/0000-0001-8418-3083Oleksandra Razim5https://orcid.org/0000-0002-3045-0446Filip Matković6https://orcid.org/0009-0002-5858-585XConnor Yablonski7https://orcid.org/0009-0000-0990-8339Toni Šarić8https://orcid.org/0000-0001-8731-8369Tomislav Jurkić9https://orcid.org/0000-0002-4993-2939Sandro Campos10https://orcid.org/0009-0007-9870-9032Melissa DeLucchi11https://orcid.org/0000-0002-1074-2900Derek Jones12https://orcid.org/0009-0006-2411-723XKonstantin Malanchev13https://orcid.org/0000-0001-7179-7406Alex I. Malz14https://orcid.org/0000-0002-8676-1622Sean McGuire15https://orcid.org/0009-0005-8764-2608Mario Jurić16https://orcid.org/0000-0003-1996-9252Ruđer Bošković Institute , Bijenička cesta 54, 10000 Zagreb, CroatiaDIRAC Institute and the Department of Astronomy, University of Washington , 3910 15th Avenue NE, Seattle, WA 98195, USADIRAC Institute and the Department of Astronomy, University of Washington , 3910 15th Avenue NE, Seattle, WA 98195, USAFaculty of Physics, University of Rijeka , Radmile Matejčić 2, 51000 Rijeka, CroatiaOlympic College , 1600 Chester Avenue, Bremerton, WA 98337, USA; DiRAC Institute, University of Washington , Box 351580, Seattle, WA 98195, USARuđer Bošković Institute , Bijenička cesta 54, 10000 Zagreb, CroatiaHvar Observatory, Faculty of Geodesy, University of Zagreb , Kačićeva 26, 10000 Zagreb, CroatiaDIRAC Institute and the Department of Astronomy, University of Washington , 3910 15th Avenue NE, Seattle, WA 98195, USAUniversity of Split—FESB , R. Boškovića 32, 21000 Split, CroatiaFaculty of Physics, University of Rijeka , Radmile Matejčić 2, 51000 Rijeka, CroatiaThe McWilliams Center for Cosmology & Astrophysics, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USAThe McWilliams Center for Cosmology & Astrophysics, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USADIRAC Institute and the Department of Astronomy, University of Washington , 3910 15th Avenue NE, Seattle, WA 98195, USAThe McWilliams Center for Cosmology & Astrophysics, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USAThe McWilliams Center for Cosmology & Astrophysics, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USAThe McWilliams Center for Cosmology & Astrophysics, Department of Physics, Carnegie Mellon University , Pittsburgh, PA 15213, USADIRAC Institute and the Department of Astronomy, University of Washington , 3910 15th Avenue NE, Seattle, WA 98195, USAAs demonstrated with the Sloan Digital Sky Survey (SDSS), Pan-STARRS, and most recently with Gaia data, broadband near-UV to near-IR stellar photometry can be used to estimate distance, metallicity, and interstellar dust extinction along the line of sight for stars in the Galaxy. Anticipating photometric catalogs with tens of billions of stars from Rubin's Legacy Survey of Space and Time (LSST), we present a Bayesian model and pipeline that build on previous work and can handle LSST-sized datasets. Likelihood computations utilize MIST/Dartmouth isochrones and priors are derived from TRILEGAL-based simulated LSST catalogs from P. Dal Tio et al. The computation speed is about 10 ms per star on a single core for both optimized grid search and Markov Chain Monte Carlo methods; we show in a companion paper by K. Mrakovčić et al. how to utilize neural networks to accelerate this performance by up to an order of magnitude. We validate our pipeline, named PhotoD (in analogy with photo- z , photometric redshifts of galaxies) using both simulated catalogs and SDSS, DECam, and Gaia photometry. We intend to make LSST-based value-added PhotoD catalogs publicly available via the Rubin Science Platform with every LSST data release.https://doi.org/10.3847/1538-3881/ada3c2Distance measureDistance indicatorsStellar distanceExtinctionInterstellar extinctionReddening law
spellingShingle Lovro Palaversa
Željko Ivezić
Neven Caplar
Karlo Mrakovčić
Bob Abel
Oleksandra Razim
Filip Matković
Connor Yablonski
Toni Šarić
Tomislav Jurkić
Sandro Campos
Melissa DeLucchi
Derek Jones
Konstantin Malanchev
Alex I. Malz
Sean McGuire
Mario Jurić
PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
The Astronomical Journal
Distance measure
Distance indicators
Stellar distance
Extinction
Interstellar extinction
Reddening law
title PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
title_full PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
title_fullStr PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
title_full_unstemmed PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
title_short PhotoD with LSST: Stellar Photometric Distances Out to the Edge of the Galaxy
title_sort photod with lsst stellar photometric distances out to the edge of the galaxy
topic Distance measure
Distance indicators
Stellar distance
Extinction
Interstellar extinction
Reddening law
url https://doi.org/10.3847/1538-3881/ada3c2
work_keys_str_mv AT lovropalaversa photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT zeljkoivezic photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT nevencaplar photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT karlomrakovcic photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT bobabel photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT oleksandrarazim photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT filipmatkovic photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT connoryablonski photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT tonisaric photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT tomislavjurkic photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT sandrocampos photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT melissadelucchi photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT derekjones photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT konstantinmalanchev photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT aleximalz photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT seanmcguire photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy
AT mariojuric photodwithlsststellarphotometricdistancesouttotheedgeofthegalaxy