An Efficient Sparse Twin Parametric Insensitive Support Vector Regression Model

This paper proposes a novel sparse twin parametric insensitive support vector regression (STPISVR) model, designed to enhance sparsity and improve generalization performance. Similar to twin parametric insensitive support vector regression (TPISVR), STPISVR constructs a pair of nonparallel parametri...

Full description

Saved in:
Bibliographic Details
Main Authors: Shuanghong Qu, Yushan Guo, Renato De Leone, Min Huang, Pu Li
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2206
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a novel sparse twin parametric insensitive support vector regression (STPISVR) model, designed to enhance sparsity and improve generalization performance. Similar to twin parametric insensitive support vector regression (TPISVR), STPISVR constructs a pair of nonparallel parametric insensitive bound functions to indirectly determine the regression function. The optimization problems are reformulated as two sparse linear programming problems (LPPs), rather than traditional quadratic programming problems (QPPs). The two LPPs are originally derived from initial L1-norm regularization terms imposed on their respective dual variables, which are simplified to constants via the Karush–Kuhn–Tucker (KKT) conditions and consequently disappear. This simplification reduces model complexity, while the constraints constructed through the KKT conditions— particularly their geometric properties—effectively ensure sparsity. Moreover, a two-stage hybrid tuning strategy—combining grid search for coarse parameter space exploration and Bayesian optimization for fine-grained convergence—is proposed to precisely select the optimal parameters, reducing tuning time and improving accuracy compared to a singlemethod strategy. Experimental results on synthetic and benchmark datasets demonstrate that STPISVR significantly reduces the number of support vectors (SVs), thereby improving prediction speed and achieving a favorable trade-off among prediction accuracy, sparsity, and computational efficiency. Overall, STPISVR enhances generalization ability, promotes sparsity, and improves prediction efficiency, making it a competitive tool for regression tasks, especially in handling complex data structures.
ISSN:2227-7390