Implied gravity promotes coherent motion perception

Abstract Gravity, a constant in Earth’s environment, constrains not only physical motion but also our estimation of motion trajectories. Early studies show that natural gravitational acceleration facilitates the manual interception of free-falling objects. However, whether implied gravity affects th...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiqian Lu, Bogeng Song, Shaoshuai Zhang, Shujia Zhang, Mei Huang, Ying Wang, Yi Jiang
Format: Article
Language:English
Published: Nature Portfolio 2025-07-01
Series:npj Microgravity
Online Access:https://doi.org/10.1038/s41526-025-00498-5
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Abstract Gravity, a constant in Earth’s environment, constrains not only physical motion but also our estimation of motion trajectories. Early studies show that natural gravitational acceleration facilitates the manual interception of free-falling objects. However, whether implied gravity affects the perception of coherent motion patterns from local motion cues remains poorly understood. Here, we designed a motion coherence threshold task to measure the visual discrimination of coherent global motion with natural (1 g) and reversed (−1 g) gravitational accelerations. Across five experiments, we showed that the perceptual thresholds of motion coherence were significantly lower under the natural gravity than the reversed gravity condition, regardless of variations in stimulus parameters and visual contexts. These convergent results suggest that the human visual system inherently extracts the gravitational acceleration cues conveyed by local motion signals and integrates them into a unified global motion, thereby facilitating the visual perception of complex motion patterns in natural environments.
ISSN:2373-8065