Monotonicities of Quasi-Normed Orlicz Spaces

In this paper, we introduce a new Orlicz function, namely a <i>b</i>-Orlicz function, which is not necessarily convex. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi&g...

Full description

Saved in:
Bibliographic Details
Main Authors: Dong Ji, Yunan Cui
Format: Article
Language:English
Published: MDPI AG 2024-10-01
Series:Axioms
Subjects:
Online Access:https://www.mdpi.com/2075-1680/13/10/696
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850205581326942208
author Dong Ji
Yunan Cui
author_facet Dong Ji
Yunan Cui
author_sort Dong Ji
collection DOAJ
description In this paper, we introduce a new Orlicz function, namely a <i>b</i>-Orlicz function, which is not necessarily convex. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> generated by the <i>b</i>-Orlicz function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> equipped with a Luxemburg quasi-norm contain both classical spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>≥</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> are quasi-Banach spaces. Some basic properties in quasi-normed Orlicz spaces are discussed, and the criteria that a quasi-normed Orlicz space is strictly monotonic and lower (upper) locally uniformly monotonic are given.
format Article
id doaj-art-79caffda89a046dfbc272bc4b4302333
institution OA Journals
issn 2075-1680
language English
publishDate 2024-10-01
publisher MDPI AG
record_format Article
series Axioms
spelling doaj-art-79caffda89a046dfbc272bc4b43023332025-08-20T02:11:04ZengMDPI AGAxioms2075-16802024-10-01131069610.3390/axioms13100696Monotonicities of Quasi-Normed Orlicz SpacesDong Ji0Yunan Cui1Department of Mathematics, Harbin University of Science and Technology, Harbin 150080, ChinaDepartment of Mathematics, Harbin University of Science and Technology, Harbin 150080, ChinaIn this paper, we introduce a new Orlicz function, namely a <i>b</i>-Orlicz function, which is not necessarily convex. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> generated by the <i>b</i>-Orlicz function <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mo>Φ</mo></semantics></math></inline-formula> equipped with a Luxemburg quasi-norm contain both classical spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mi>p</mi><mo>≥</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msup><mi>L</mi><mi>p</mi></msup><mrow><mo stretchy="false">(</mo><mn>0</mn><mo><</mo><mi>p</mi><mo><</mo><mn>1</mn><mo stretchy="false">)</mo></mrow></mrow></semantics></math></inline-formula>. The Orlicz spaces <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>L</mi><mo>Φ</mo></msup></semantics></math></inline-formula> are quasi-Banach spaces. Some basic properties in quasi-normed Orlicz spaces are discussed, and the criteria that a quasi-normed Orlicz space is strictly monotonic and lower (upper) locally uniformly monotonic are given.https://www.mdpi.com/2075-1680/13/10/696<i>b</i>-Orlicz functionOrlicz spacesquasi-normstrict monotonicitylower local uniform monotonicityupper local uniform monotonicity
spellingShingle Dong Ji
Yunan Cui
Monotonicities of Quasi-Normed Orlicz Spaces
Axioms
<i>b</i>-Orlicz function
Orlicz spaces
quasi-norm
strict monotonicity
lower local uniform monotonicity
upper local uniform monotonicity
title Monotonicities of Quasi-Normed Orlicz Spaces
title_full Monotonicities of Quasi-Normed Orlicz Spaces
title_fullStr Monotonicities of Quasi-Normed Orlicz Spaces
title_full_unstemmed Monotonicities of Quasi-Normed Orlicz Spaces
title_short Monotonicities of Quasi-Normed Orlicz Spaces
title_sort monotonicities of quasi normed orlicz spaces
topic <i>b</i>-Orlicz function
Orlicz spaces
quasi-norm
strict monotonicity
lower local uniform monotonicity
upper local uniform monotonicity
url https://www.mdpi.com/2075-1680/13/10/696
work_keys_str_mv AT dongji monotonicitiesofquasinormedorliczspaces
AT yunancui monotonicitiesofquasinormedorliczspaces