Tendency in tip polarity changes in non-contact atomic force microscopy imaging on a fluorite surface

We investigate the impact of tip changes on atomic-scale non-contact atomic force microscopy (NC-AFM) contrast formation when imaging a CaF2(111) surface. A change of the atomic contrast is explained by a polarity change of the tip-terminating cluster or by a polarity-preserving tip change via the r...

Full description

Saved in:
Bibliographic Details
Main Authors: Bob Kyeyune, Philipp Rahe, Michael Reichling
Format: Article
Language:English
Published: Beilstein-Institut 2025-06-01
Series:Beilstein Journal of Nanotechnology
Subjects:
Online Access:https://doi.org/10.3762/bjnano.16.72
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:We investigate the impact of tip changes on atomic-scale non-contact atomic force microscopy (NC-AFM) contrast formation when imaging a CaF2(111) surface. A change of the atomic contrast is explained by a polarity change of the tip-terminating cluster or by a polarity-preserving tip change via the re-arrangement of the foremost atoms. Based on the established understanding of the unique contrast patterns on CaF2(111), polarity-preserving and polarity-changing tip changes can be identified unambiguously. From analyzing a large set of images, we find that the vast majority of tip changes tend to result in negative tip termination. This analysis delivers hints for tip configurations suitable for stable imaging of CaF2(111) surfaces.
ISSN:2190-4286