Grey Wolf Optimizer-Based ANNs to Predict the Compressive Strength of Self-Compacting Concrete

Ever since their presentation in the late 80s, self-compacting concrete (SCC) has been well received by researchers. SCC can flow under their weight and exhibit high workability. Nonetheless, their nonlinear behavior has made the prediction of their mix properties more demanding. Furthermore, the co...

Full description

Saved in:
Bibliographic Details
Main Authors: Amir Andalib, Babak Aminnejad, Alireza Lork
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2022/9887803
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Ever since their presentation in the late 80s, self-compacting concrete (SCC) has been well received by researchers. SCC can flow under their weight and exhibit high workability. Nonetheless, their nonlinear behavior has made the prediction of their mix properties more demanding. Furthermore, the complex relationship between mixed proportions and rheological and mechanical properties of SCC renders their behavior prediction challenging. Soft computing approaches have been shown to optimize and reduce uncertainties, and therefore in this paper, we aim to address these challenges by employing artificial neural network (ANN) models optimized using the grey wolf optimizer (GWO) algorithm. The optimized model proved to be more accurate than genetic algorithms and multiple linear regression models. The results indicate that the four most influential parameters on the compressive strength of SCC are the cement content, ground granulated blast furnace slag, rice husk ash, and fly ash.
ISSN:1687-9732