C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension

Abstract Metabolic reprogramming of vascular cells plays a crucial role in Pulmonary Arterial Hypertension (PAH), marked by a shift from oxidative phosphorylation to glycolysis (Warburg effect), altered purine biosynthesis, impaired glutaminolysis and fatty acid oxidation, driving endothelial and sm...

Full description

Saved in:
Bibliographic Details
Main Authors: Minhee Noh, Ankita Mitra, Lisa Krebes, Werner Schmitz, Jan Dudek, Stuti Agarwal, Christoph Maack, Paula Arias-Loza, Takahiro Higuchi, Ivan Aleksic, Vinicio A. de Jesus Perez, Michaela Kuhn, Swati Dabral
Format: Article
Language:English
Published: Nature Portfolio 2025-08-01
Series:Communications Biology
Online Access:https://doi.org/10.1038/s42003-025-08661-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849761696325828608
author Minhee Noh
Ankita Mitra
Lisa Krebes
Werner Schmitz
Jan Dudek
Stuti Agarwal
Christoph Maack
Paula Arias-Loza
Takahiro Higuchi
Ivan Aleksic
Vinicio A. de Jesus Perez
Michaela Kuhn
Swati Dabral
author_facet Minhee Noh
Ankita Mitra
Lisa Krebes
Werner Schmitz
Jan Dudek
Stuti Agarwal
Christoph Maack
Paula Arias-Loza
Takahiro Higuchi
Ivan Aleksic
Vinicio A. de Jesus Perez
Michaela Kuhn
Swati Dabral
author_sort Minhee Noh
collection DOAJ
description Abstract Metabolic reprogramming of vascular cells plays a crucial role in Pulmonary Arterial Hypertension (PAH), marked by a shift from oxidative phosphorylation to glycolysis (Warburg effect), altered purine biosynthesis, impaired glutaminolysis and fatty acid oxidation, driving endothelial and smooth muscle cell hyperproliferation. The metabolic alterations underlying pericyte dysfunction in PAH remain largely unexplored. Here, we investigated the metabolic alterations in PAH lung pericytes and the impact of C-type natriuretic peptide (CNP) and Guanylyl Cyclase-B/cyclic GMP signaling on these changes. Our results demonstrate that PAH pericytes exhibit increased glucose uptake, glycolysis, and de novo pyrimidine synthesis, promoting their hyperproliferation. These changes are driven by the upregulated glucose transporter, GLUT-1 and Pyruvate dehydrogenase kinase 1, along with enhanced CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) activity, both in vitro and in situ. CNP counteracts these alterations through activation of cGMP-dependent kinase I, reducing HIF-1α and GLUT-1 expression and thereby glucose uptake. Additionally, CNP activates Phosphodiesterase 2 A and thereby inhibits CAD activation and de novo pyrimidine synthesis. Accordingly, CNP prevented growth factor-induced proliferation and metabolic changes in murine pericytes within precision-cut lung slices. This study highlights dysregulated metabolic pathways in PAH pericytes and the therapeutic potential of CNP.
format Article
id doaj-art-79831f77c38d4b1eb248bb5efaa9d53d
institution DOAJ
issn 2399-3642
language English
publishDate 2025-08-01
publisher Nature Portfolio
record_format Article
series Communications Biology
spelling doaj-art-79831f77c38d4b1eb248bb5efaa9d53d2025-08-20T03:05:56ZengNature PortfolioCommunications Biology2399-36422025-08-018111610.1038/s42003-025-08661-0C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertensionMinhee Noh0Ankita Mitra1Lisa Krebes2Werner Schmitz3Jan Dudek4Stuti Agarwal5Christoph Maack6Paula Arias-Loza7Takahiro Higuchi8Ivan Aleksic9Vinicio A. de Jesus Perez10Michaela Kuhn11Swati Dabral12Institute of Physiology, University of WürzburgDivisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford UniversityInstitute of Physiology, University of WürzburgInstitute of Biochemistry and Molecular Biology, University of WürzburgComprehensive Heart Failure Center, University Hospital WürzburgDivisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford UniversityComprehensive Heart Failure Center, University Hospital WürzburgDepartment of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital WürzburgDepartment of Nuclear Medicine and Comprehensive Heart Failure Center, University Hospital WürzburgDepartment of Thoracic and Cardiovascular Surgery, University Hospital WürzburgDivisions of Pulmonary and Critical Care Medicine and Stanford Cardiovascular Institute, Stanford UniversityInstitute of Physiology, University of WürzburgInstitute of Physiology, University of WürzburgAbstract Metabolic reprogramming of vascular cells plays a crucial role in Pulmonary Arterial Hypertension (PAH), marked by a shift from oxidative phosphorylation to glycolysis (Warburg effect), altered purine biosynthesis, impaired glutaminolysis and fatty acid oxidation, driving endothelial and smooth muscle cell hyperproliferation. The metabolic alterations underlying pericyte dysfunction in PAH remain largely unexplored. Here, we investigated the metabolic alterations in PAH lung pericytes and the impact of C-type natriuretic peptide (CNP) and Guanylyl Cyclase-B/cyclic GMP signaling on these changes. Our results demonstrate that PAH pericytes exhibit increased glucose uptake, glycolysis, and de novo pyrimidine synthesis, promoting their hyperproliferation. These changes are driven by the upregulated glucose transporter, GLUT-1 and Pyruvate dehydrogenase kinase 1, along with enhanced CAD (Carbamoyl-phosphate synthetase 2, Aspartate transcarbamoylase, and Dihydroorotase) activity, both in vitro and in situ. CNP counteracts these alterations through activation of cGMP-dependent kinase I, reducing HIF-1α and GLUT-1 expression and thereby glucose uptake. Additionally, CNP activates Phosphodiesterase 2 A and thereby inhibits CAD activation and de novo pyrimidine synthesis. Accordingly, CNP prevented growth factor-induced proliferation and metabolic changes in murine pericytes within precision-cut lung slices. This study highlights dysregulated metabolic pathways in PAH pericytes and the therapeutic potential of CNP.https://doi.org/10.1038/s42003-025-08661-0
spellingShingle Minhee Noh
Ankita Mitra
Lisa Krebes
Werner Schmitz
Jan Dudek
Stuti Agarwal
Christoph Maack
Paula Arias-Loza
Takahiro Higuchi
Ivan Aleksic
Vinicio A. de Jesus Perez
Michaela Kuhn
Swati Dabral
C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
Communications Biology
title C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
title_full C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
title_fullStr C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
title_full_unstemmed C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
title_short C-type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
title_sort c type natriuretic peptide attenuates enhanced glycolysis and de novo pyrimidine synthesis in pericytes of patients with pulmonary arterial hypertension
url https://doi.org/10.1038/s42003-025-08661-0
work_keys_str_mv AT minheenoh ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT ankitamitra ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT lisakrebes ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT wernerschmitz ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT jandudek ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT stutiagarwal ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT christophmaack ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT paulaariasloza ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT takahirohiguchi ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT ivanaleksic ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT vinicioadejesusperez ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT michaelakuhn ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension
AT swatidabral ctypenatriureticpeptideattenuatesenhancedglycolysisanddenovopyrimidinesynthesisinpericytesofpatientswithpulmonaryarterialhypertension