Estimation of Three-Dimensional Ground Reaction Force and Center of Pressure During Walking Using a Machine-Learning-Based Markerless Motion Capture System
Objective: We developed two neural network models to estimate the three-dimensional ground reaction force (GRF) and center of pressure (COP) based on marker trajectories obtained from a markerless motion capture system. Methods: Gait data were collected using two cameras and three force plates. Each...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Bioengineering |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2306-5354/12/6/588 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Objective: We developed two neural network models to estimate the three-dimensional ground reaction force (GRF) and center of pressure (COP) based on marker trajectories obtained from a markerless motion capture system. Methods: Gait data were collected using two cameras and three force plates. Each gait dataset contained kinematic data and kinetic data from the stance phase. A multi-layer perceptron (MLP) and convolutional neural network (CNN) were constructed to estimate each component of GRF and COP based on the three-dimensional trajectories of the markers. A total of 100 samples were randomly selected as the test set, and the estimation performance was evaluated using the correlation coefficient (r) and relative root mean square error (rRMSE). Results: The r-values for MLP in each GRF component ranged from 0.918 to 0.989, with rRMSEs between 5.06% and 12.08%. The r-values for CNN in each GRF component ranged from 0.956 to 0.988, with rRMSEs between 6.03–9.44%. For the COP estimation, the r-values for MLP ranged from 0.727 to 0.982, with rRMSEs between 6.43% and 27.64%, while the r-values for CNN ranged from 0.896 to 0.977, with rRMSEs between 6.41% and 7.90%. Conclusions: It is possible to estimate GRF and COP from markerless motion capture data. This approach provides an alternative method for measuring kinetic parameters without force plates during gait analysis. |
|---|---|
| ISSN: | 2306-5354 |