Dynamics of a sex-linked deleterious mutation in populations subject to sex reversal.

The heterogametic sex chromosomes (i.e. mammalian Y and avian W) do not usually recombine with the homogametic sex chromosomes which is known to lead into rapid degeneration of Y and W due to accumulation of deleterious mutations. On the other hand, some 96% of amphibian species have homomorphic, i....

Full description

Saved in:
Bibliographic Details
Main Author: Markku Karhunen
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2011-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0025362&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The heterogametic sex chromosomes (i.e. mammalian Y and avian W) do not usually recombine with the homogametic sex chromosomes which is known to lead into rapid degeneration of Y and W due to accumulation of deleterious mutations. On the other hand, some 96% of amphibian species have homomorphic, i.e. non-degenerate Y chromosomes. Nicolas Perrin's fountain-of-youth hypothesis states that this is a result of recombination between X and Y chromosomes in sex-reversed individuals. In this study, I model the consequences of such recombination for the dynamics of a deleterious mutation occurring in Y chromosomes. As expected, even relatively low levels of sex reversal help to purge deleterious mutations. However, the population-dynamic consequences of this depend on the type of selection that operates on the population undergoing sex reversal. Under fecundity selection, sex reversal can be beneficial for some parameter values, whereas under survival selection, it seems to be always harmful.
ISSN:1932-6203