Tomato Yield Estimation Using an Improved Lightweight YOLO11n Network and an Optimized Region Tracking-Counting Method
Accurate and effective fruit tracking and counting are crucial for estimating tomato yield. In complex field environments, occlusion and overlap of tomato fruits and leaves often lead to inaccurate counting. To address these issues, this study proposed an improved lightweight YOLO11n network and an...
Saved in:
| Main Authors: | , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-06-01
|
| Series: | Agriculture |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2077-0472/15/13/1353 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Accurate and effective fruit tracking and counting are crucial for estimating tomato yield. In complex field environments, occlusion and overlap of tomato fruits and leaves often lead to inaccurate counting. To address these issues, this study proposed an improved lightweight YOLO11n network and an optimized region tracking-counting method, which estimates the quantity of tomatoes at different maturity stages. An improved lightweight YOLO11n network was employed for tomato detection and semantic segmentation, which was combined with the C3k2-F, Generalized Intersection over Union (GIoU), and Depthwise Separable Convolution (DSConv) modules. The improved lightweight YOLO11n model is adaptable to edge computing devices, enabling tomato yield estimation while maintaining high detection accuracy. An optimized region tracking-counting method was proposed, combining target tracking and region detection to count the detected fruits. The particle swarm optimization (PSO) algorithm was used to optimize the detection region, thus enhancing the counting accuracy. In terms of network lightweighting, compared to the original, the improved YOLO11n network significantly reduces the number of parameters and Giga Floating-point Operations Per Second (GFLOPs) by 0.22 M and 2.5 G, while achieving detection and segmentation accuracies of 91.3% and 90.5%, respectively. For fruit counting, the results showed that the proposed region tracking-counting method achieved a mean counting error (MCE) of 6.6%, representing a reduction of 5.0% and 2.1% compared to the Bytetrack and cross-line counting methods, respectively. Therefore, the proposed method provided an effective approach for non-contact, accurate, efficient, and real-time intelligent yield estimation for tomatoes. |
|---|---|
| ISSN: | 2077-0472 |