Processable Bio-Based Polybenzoxazine with Tunable Toughness and Dielectric Properties

There is remarkable demand for bio-based specialty resins such as benzoxazine thermosets, but they are brittle and difficult to process. This study reports the synthesis of a processable bio-based polybenzoxazine resin via the copolymerization of rigid and soft benzoxazine dimers synthesized from bi...

Full description

Saved in:
Bibliographic Details
Main Authors: Jiale Li, Meng Liu, Yuan Liu, Peng Zhao, Yuhan Lou, Zhiqian Meng, Xiaoxue Song, Zhenle Hu, Yongzhuang Liu, Haipeng Yu
Format: Article
Language:English
Published: American Association for the Advancement of Science (AAAS) 2025-01-01
Series:Research
Online Access:https://spj.science.org/doi/10.34133/research.0745
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:There is remarkable demand for bio-based specialty resins such as benzoxazine thermosets, but they are brittle and difficult to process. This study reports the synthesis of a processable bio-based polybenzoxazine resin via the copolymerization of rigid and soft benzoxazine dimers synthesized from bio-based phenols. The polybenzoxazine copolymer demonstrated excellent thermoplasticity and a tunable toughness in the range of 9.0 to 24.1 MJ/m3. The incorporation of soft segments and dynamic ester bonds in the polybenzoxazine notably improved its thermoplasticity compared with traditional thermosetting benzoxazine resins. The polybenzoxazine copolymer also demonstrated a dielectric constant of 2.99 and a dielectric loss of 0.019 at 3 GHz, as well as a high breakdown voltage of 27.2 kV/mm. This research highlights the promising mechanical and thermal properties of the resulting bio-based resin, as well as its tunable dielectric properties, making it a competitive candidate for various high-performance applications in the polymer industry.
ISSN:2639-5274