InceptionDTA: Predicting drug-target binding affinity with biological context features and inception networks
Predicting drug-target binding affinity via in silico methods is crucial in drug discovery. Traditional machine learning relies on manually engineered features from limited data, leading to suboptimal performance. In contrast, deep learning excels at extracting features from raw sequences but often...
Saved in:
Main Authors: | Mahmood Kalemati, Mojtaba Zamani Emani, Somayyeh Koohi |
---|---|
Format: | Article |
Language: | English |
Published: |
Elsevier
2025-02-01
|
Series: | Heliyon |
Subjects: | |
Online Access: | http://www.sciencedirect.com/science/article/pii/S2405844025008564 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Similar Items
-
GS-DTA: integrating graph and sequence models for predicting drug-target binding affinity
by: Junwei Luo, et al.
Published: (2025-02-01) -
FingerDTA: A Fingerprint-Embedding Framework for Drug-Target Binding Affinity Prediction
by: Xuekai Zhu, et al.
Published: (2023-03-01) -
A Systemic Approach to Inceptive Constructions in Lithuanian
by: Rolandas Mikulskas
Published: (2023-12-01) -
Drug-target binding affinity prediction based on power graph and word2vec
by: Jing Hu, et al.
Published: (2025-01-01) -
AI-Driven Plant Health Assessment: A Comparative Analysis of Inception V3, ResNet-50 and ViT with SHAP for Accurate Disease Identification in Taro
by: Valeria Maeda-Gutiérrez, et al.
Published: (2024-12-01)