Finite-Time Orbit Control for Spacecraft Formation with External Disturbances and Limited Data Communication

This work addresses the finite-time orbit control problem for spacecraft formation flying with external disturbances and limited data communication. A hysteretic quantizer is employed for data quantization in the controller-actuator channel to decrease the communication rate and prevent the chatteri...

Full description

Saved in:
Bibliographic Details
Main Authors: Lei Xing, Dechao Ran, Jian Zhang, Li Huang
Format: Article
Language:English
Published: Wiley 2022-01-01
Series:International Journal of Aerospace Engineering
Online Access:http://dx.doi.org/10.1155/2022/1911820
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work addresses the finite-time orbit control problem for spacecraft formation flying with external disturbances and limited data communication. A hysteretic quantizer is employed for data quantization in the controller-actuator channel to decrease the communication rate and prevent the chattering phenomenon caused by the logarithmic quantizer. Combined with the adding one power integrator method and backstepping technique, a new finite-time tracking control strategy with adaptation law is designed to ensure that the closed-loop system is practical finite-time stable, and that the tracking errors of relative position and velocity are bounded within finite-time despite with limited data communication and external disturbances. Finally, an example is shown to validate the effectiveness of the proposed finite-time tracking controller.
ISSN:1687-5974