Event-Driven Dynamics Model of Operating State Evolution for Cantilever Roadheader

In the application of digital twin technology for the heading workface in coal mining, real-time state data will be transmitted to the remote control platform through a gateway device. This cross-system and cross-software data transmission method inevitably introduces transmission delays, resulting...

Full description

Saved in:
Bibliographic Details
Main Authors: Yan Wang, Zhiwei Yang, Haonan Kou, Yule Gao, Xuhui Zhang, Youjun Zhao
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/8/4376
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the application of digital twin technology for the heading workface in coal mining, real-time state data will be transmitted to the remote control platform through a gateway device. This cross-system and cross-software data transmission method inevitably introduces transmission delays, resulting in a certain spatiotemporal discrepancy in the virtual model control for the remote control of the physical equipment. In this paper, by analyzing the operational process of the cantilever roadheader, a state evolution dynamics model construction method for the cantilever roadheader is proposed, which includes three stages, the discretization of the operating state based on the cutting path, event-driven graph construction of the cutting state evolution, and real-time data-driven dynamics evolution, so to continuously monitor, analyze, and adjust the operational dynamics of the cantilever roadheader based on real-time state data, thus improving the efficiency, performance, and adaptability. The construction of the model provides a theoretical basis and technical support for the construction and alignment of the digital twin multidimensional model of the cantilever roadheader.
ISSN:2076-3417