Non-Vertical Well Trajectory Design Based on Multi-Objective Optimization

The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory optimiz...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaowei Li, Yu Li, Yang Wu, Zhaokai Hou, Haipeng Gu
Format: Article
Language:English
Published: MDPI AG 2025-07-01
Series:Applied Sciences
Subjects:
Online Access:https://www.mdpi.com/2076-3417/15/14/7862
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The optimization and control of the wellbore trajectory is one of the important technologies to improve drilling efficiency, reduce drilling cost, and ensure drilling safety in the process of modern oil and gas exploration and development. In this paper, a multi-objective wellbore trajectory optimization mathematical model is established, which takes into account the five factors of wellbore trajectory length, friction, torque, trajectory complexity, and target accuracy. A DR-NSGA-III-MGA algorithm (dynamic reference NSGA-III with multi-granularity adaptation) is proposed. By introducing multi-granularity reference vector generation and an information entropy-guided search direction adaptation mechanism, the performance of the algorithm in the complex target space is improved, and the three-stage wellbore trajectory is optimized. Simulation experiments show that the DR-NSGA-III-MGA algorithm is stable in a variety of complex problems, while maintaining good convergence, and has good generalization ability and practical application value.
ISSN:2076-3417