miR-23b Negatively Regulates Sepsis-Induced Inflammatory Responses by Targeting ADAM10 in Human THP-1 Monocytes

Background. Previous studies have demonstrated pivotal roles of disintegrin and metalloproteinase 10 (ADAM10) in the pathogenesis of sepsis. MicroRNA- (miR-) 23b has emerged as an anti-inflammatory factor that prevents multiple autoimmune diseases. However, the underlying mechanisms of miR-23b in th...

Full description

Saved in:
Bibliographic Details
Main Authors: Wenying Zhang, Furong Lu, Yuliu Xie, Yao Lin, Tian Zhao, Shoubao Tao, Zhipeng Lai, Ning Wei, Ruoxuan Yang, Yiming Shao, Junbing He
Format: Article
Language:English
Published: Wiley 2019-01-01
Series:Mediators of Inflammation
Online Access:http://dx.doi.org/10.1155/2019/5306541
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Background. Previous studies have demonstrated pivotal roles of disintegrin and metalloproteinase 10 (ADAM10) in the pathogenesis of sepsis. MicroRNA- (miR-) 23b has emerged as an anti-inflammatory factor that prevents multiple autoimmune diseases. However, the underlying mechanisms of miR-23b in the regulation of ADAM10 and sepsis remain uncharacterized. Methods. The expression levels of ADAM10 and miR-23b were detected by quantitative RT-PCR and western blot analysis. Cytokine production and THP-1 cell apoptosis were measured by enzyme-linked immunosorbent and annexin V apoptosis assays. Bioinformatics analyses and qRT-PCR, western blot, and luciferase reporter assays were performed to identify ADAM10 as the target gene of miR-23b. Results. miR-23b expression was downregulated in the peripheral blood mononuclear cells of sepsis patients and LPS-induced THP-1 cells and was negatively correlated with the expression of ADAM10 and inflammatory cytokines. miR-23b regulated ADAM10 expression by directly binding to the 3′-UTR of ADAM10 mRNA. The overexpression of miR-23b alleviated the LPS-stimulated production of inflammatory cytokines (TNF-α, IL-1β, and IL-6) and apoptosis by targeting ADAM10 in THP-1 cells. The inhibitor or knockdown of ADAM10 elicited effects similar to those of miR-23b on THP-1 cells upon LPS stimulation. Conclusions. The present study demonstrated that miR-23b negatively regulated LPS-induced inflammatory responses by targeting ADAM10. The molecular regulatory mechanism of miR-23b in ADAM10 expression and sepsis-induced inflammatory consequences may provide potential therapeutic targets for sepsis.
ISSN:0962-9351
1466-1861