RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease

Abstract Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technol...

Full description

Saved in:
Bibliographic Details
Main Authors: Manuel Lentzen, Srinivasan Vairavan, Marijn Muurling, Vasilis Alepopoulos, Alankar Atreya, Merce Boada, Casper de Boer, Pauline Conde, Jelena Curcic, Giovanni Frisoni, Samantha Galluzzi, Martha Therese Gjestsen, Mara Gkioka, Margarita Grammatikopoulou, Lucrezia Hausner, Chris Hinds, Ioulietta Lazarou, Alexandre de Mendonça, Spiros Nikolopoulos, Dorota Religa, Gaetano Scebba, Pieter Jelle Visser, Gayle Wittenberg, Vaibhav A. Narayan, Neva Coello, Anna-Katharine Brem, Dag Aarsland, Holger Fröhlich, on behalf of RADAR-AD
Format: Article
Language:English
Published: BMC 2025-01-01
Series:Alzheimer’s Research & Therapy
Subjects:
Online Access:https://doi.org/10.1186/s13195-025-01675-0
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832571936067026944
author Manuel Lentzen
Srinivasan Vairavan
Marijn Muurling
Vasilis Alepopoulos
Alankar Atreya
Merce Boada
Casper de Boer
Pauline Conde
Jelena Curcic
Giovanni Frisoni
Samantha Galluzzi
Martha Therese Gjestsen
Mara Gkioka
Margarita Grammatikopoulou
Lucrezia Hausner
Chris Hinds
Ioulietta Lazarou
Alexandre de Mendonça
Spiros Nikolopoulos
Dorota Religa
Gaetano Scebba
Pieter Jelle Visser
Gayle Wittenberg
Vaibhav A. Narayan
Neva Coello
Anna-Katharine Brem
Dag Aarsland
Holger Fröhlich
on behalf of RADAR-AD
author_facet Manuel Lentzen
Srinivasan Vairavan
Marijn Muurling
Vasilis Alepopoulos
Alankar Atreya
Merce Boada
Casper de Boer
Pauline Conde
Jelena Curcic
Giovanni Frisoni
Samantha Galluzzi
Martha Therese Gjestsen
Mara Gkioka
Margarita Grammatikopoulou
Lucrezia Hausner
Chris Hinds
Ioulietta Lazarou
Alexandre de Mendonça
Spiros Nikolopoulos
Dorota Religa
Gaetano Scebba
Pieter Jelle Visser
Gayle Wittenberg
Vaibhav A. Narayan
Neva Coello
Anna-Katharine Brem
Dag Aarsland
Holger Fröhlich
on behalf of RADAR-AD
author_sort Manuel Lentzen
collection DOAJ
description Abstract Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills. Timely detection of these symptoms can facilitate early intervention, potentially slowing disease progression and enabling appropriate treatment and care. Methods The RADAR-AD study was designed to evaluate the accuracy and validity of multiple RMTs in detecting functional decline across various stages of AD in a real-world setting, compared to standard clinical rating scales. Our approach involved a univariate analysis using Analysis of Covariance (ANCOVA) to analyze individual features of six RMTs while adjusting for variables such as age, sex, years of education, clinical site, BMI and season. Additionally, we employed four machine learning classifiers – Logistic Regression, Decision Tree, Random Forest, and XGBoost – using a nested cross-validation approach to assess the discriminatory capabilities of the RMTs. Results The ANCOVA results indicated significant differences between healthy and AD subjects regarding reduced physical activity, less REM sleep, altered gait patterns, and decreased cognitive functioning. The machine-learning-based analysis demonstrated that RMT-based models could identify subjects in the prodromal stage with an Area Under the ROC Curve of 73.0 %. In addition, our findings show that the Amsterdam iADL questionnaire has high discriminatory abilities. Conclusions RMTs show promise in AD detection already in the prodromal stage. Using them could allow for earlier detection and intervention, thereby improving patients’ quality of life. Furthermore, the Amsterdam iADL questionnaire holds high potential when employed remotely.
format Article
id doaj-art-789e135650fb424787d398f5a39e039d
institution Kabale University
issn 1758-9193
language English
publishDate 2025-01-01
publisher BMC
record_format Article
series Alzheimer’s Research & Therapy
spelling doaj-art-789e135650fb424787d398f5a39e039d2025-02-02T12:11:56ZengBMCAlzheimer’s Research & Therapy1758-91932025-01-0117111710.1186/s13195-025-01675-0RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s diseaseManuel Lentzen0Srinivasan Vairavan1Marijn Muurling2Vasilis Alepopoulos3Alankar Atreya4Merce Boada5Casper de Boer6Pauline Conde7Jelena Curcic8Giovanni Frisoni9Samantha Galluzzi10Martha Therese Gjestsen11Mara Gkioka12Margarita Grammatikopoulou13Lucrezia Hausner14Chris Hinds15Ioulietta Lazarou16Alexandre de Mendonça17Spiros Nikolopoulos18Dorota Religa19Gaetano Scebba20Pieter Jelle Visser21Gayle Wittenberg22Vaibhav A. Narayan23Neva Coello24Anna-Katharine Brem25Dag Aarsland26Holger Fröhlich27on behalf of RADAR-ADFraunhofer Institute for Algorithms and Scientific Computing SCAIJanssen Research and Development LLCAlzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcCentre for Research & Technology Hellas, Information Technologies InstituteUniversity of OxfordAce Alzheimer Center Barcelona, Universitat Internacional de CatalunyaAlzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcKing’s College LondonBiomedical Research, NovartisMemory Center, Geneva University and University HospitalLaboratory Alzheimer’s Neuroimaging & Epidemiology, IRCCS Istituto Centro San Giovanni di Dio FatebenefratelliCentre for Age-related Medicine, Stavanger University HospitalAlzheimer Hellas and Laboratory of Neurodegenerative Diseases, Aristotle University of ThessalonikiCentre for Research & Technology Hellas, Information Technologies InstituteCentral Institute of Mental Health, Medical Faculty Mannheim, University of HeidelbergUniversity of OxfordCentre for Research & Technology Hellas, Information Technologies InstituteFaculty of Medicine, University of LisbonCentre for Research & Technology Hellas, Information Technologies InstituteCenter for Alzheimer Research, Department of Neurobiology, Care Sciences and Society (NVS), Karolinska InstitutetBiomedical Research, NovartisAlzheimer Center Amsterdam, Neurology, Vrije Universiteit Amsterdam, Amsterdam UMC location VUmcJanssen Research and Development LLCDavos Alzheimer’s CollaborativeNovartis Pharma AGKing’s College LondonKing’s College LondonFraunhofer Institute for Algorithms and Scientific Computing SCAIAbstract Background Alzheimer’s disease (AD) is a progressive neurodegenerative disorder affecting millions worldwide, leading to cognitive and functional decline. Early detection and intervention are crucial for enhancing the quality of life of patients and their families. Remote Monitoring Technologies (RMTs) offer a promising solution for early detection by tracking changes in behavioral and cognitive functions, such as memory, language, and problem-solving skills. Timely detection of these symptoms can facilitate early intervention, potentially slowing disease progression and enabling appropriate treatment and care. Methods The RADAR-AD study was designed to evaluate the accuracy and validity of multiple RMTs in detecting functional decline across various stages of AD in a real-world setting, compared to standard clinical rating scales. Our approach involved a univariate analysis using Analysis of Covariance (ANCOVA) to analyze individual features of six RMTs while adjusting for variables such as age, sex, years of education, clinical site, BMI and season. Additionally, we employed four machine learning classifiers – Logistic Regression, Decision Tree, Random Forest, and XGBoost – using a nested cross-validation approach to assess the discriminatory capabilities of the RMTs. Results The ANCOVA results indicated significant differences between healthy and AD subjects regarding reduced physical activity, less REM sleep, altered gait patterns, and decreased cognitive functioning. The machine-learning-based analysis demonstrated that RMT-based models could identify subjects in the prodromal stage with an Area Under the ROC Curve of 73.0 %. In addition, our findings show that the Amsterdam iADL questionnaire has high discriminatory abilities. Conclusions RMTs show promise in AD detection already in the prodromal stage. Using them could allow for earlier detection and intervention, thereby improving patients’ quality of life. Furthermore, the Amsterdam iADL questionnaire holds high potential when employed remotely.https://doi.org/10.1186/s13195-025-01675-0Alzheimer’s diseaseRemote monitoring technologiesWearablesMobile applicationsDiscriminative capacity
spellingShingle Manuel Lentzen
Srinivasan Vairavan
Marijn Muurling
Vasilis Alepopoulos
Alankar Atreya
Merce Boada
Casper de Boer
Pauline Conde
Jelena Curcic
Giovanni Frisoni
Samantha Galluzzi
Martha Therese Gjestsen
Mara Gkioka
Margarita Grammatikopoulou
Lucrezia Hausner
Chris Hinds
Ioulietta Lazarou
Alexandre de Mendonça
Spiros Nikolopoulos
Dorota Religa
Gaetano Scebba
Pieter Jelle Visser
Gayle Wittenberg
Vaibhav A. Narayan
Neva Coello
Anna-Katharine Brem
Dag Aarsland
Holger Fröhlich
on behalf of RADAR-AD
RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
Alzheimer’s Research & Therapy
Alzheimer’s disease
Remote monitoring technologies
Wearables
Mobile applications
Discriminative capacity
title RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
title_full RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
title_fullStr RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
title_full_unstemmed RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
title_short RADAR-AD: assessment of multiple remote monitoring technologies for early detection of Alzheimer’s disease
title_sort radar ad assessment of multiple remote monitoring technologies for early detection of alzheimer s disease
topic Alzheimer’s disease
Remote monitoring technologies
Wearables
Mobile applications
Discriminative capacity
url https://doi.org/10.1186/s13195-025-01675-0
work_keys_str_mv AT manuellentzen radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT srinivasanvairavan radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT marijnmuurling radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT vasilisalepopoulos radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT alankaratreya radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT merceboada radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT casperdeboer radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT paulineconde radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT jelenacurcic radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT giovannifrisoni radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT samanthagalluzzi radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT marthatheresegjestsen radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT maragkioka radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT margaritagrammatikopoulou radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT lucreziahausner radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT chrishinds radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT iouliettalazarou radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT alexandredemendonca radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT spirosnikolopoulos radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT dorotareliga radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT gaetanoscebba radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT pieterjellevisser radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT gaylewittenberg radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT vaibhavanarayan radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT nevacoello radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT annakatharinebrem radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT dagaarsland radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT holgerfrohlich radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease
AT onbehalfofradarad radaradassessmentofmultipleremotemonitoringtechnologiesforearlydetectionofalzheimersdisease