Prompting for products: investigating design space exploration strategies for text-to-image generative models

Text-to-image models are enabling efficient design space exploration, rapidly generating images from text prompts. However, many generative AI tools are imperfect for product design applications as they are not built for the goals and requirements of product design. The unclear link between text inp...

Full description

Saved in:
Bibliographic Details
Main Authors: Leah Chong, I-Ping Lo, Jude Rayan, Steven Dow, Faez Ahmed, Ioanna Lykourentzou
Format: Article
Language:English
Published: Cambridge University Press 2025-01-01
Series:Design Science
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2053470124000519/type/journal_article
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Text-to-image models are enabling efficient design space exploration, rapidly generating images from text prompts. However, many generative AI tools are imperfect for product design applications as they are not built for the goals and requirements of product design. The unclear link between text input and image output further complicates their application. This work empirically investigates design space exploration strategies that can successfully yield product images that are feasible, novel and aesthetic – three common goals in product design. Specifically, users’ actions within the global and local editing modes, including their time spent, prompt length, mono versus multi-criteria prompts, and goal orientation of prompts, are analyzed. Key findings reveal the pivotal role of mono versus multi-criteria and goal orientation of prompts in achieving specific design goals over time and prompt length. The study recommends prioritizing the use of multi-criteria prompts for feasibility and novelty during global editing while favoring mono-criteria prompts for aesthetics during local editing. Overall, this article underscores the nuanced relationship between the AI-driven text-to-image models and their effectiveness in product design, urging designers to carefully structure prompts during different editing modes to better meet the unique demands of product design.
ISSN:2053-4701