Class Weighting Approach For Handling Imbalanced Data On Forest Fire Classification Using EfficientNet-B1

Wildfires pose significant threats to ecosystems and human safety, necessitating effective monitoring techniques. Detecting forest fires based on images of forest conditions could be a breakthrough. But, the model built from imbalanced data leads to low accuracy. This research addresses the challen...

Full description

Saved in:
Bibliographic Details
Main Authors: Arvinanto Bahtiar, Muhammad Ihsan Prawira Hutomo, Agung Widiyanto, Siti Khomsah
Format: Article
Language:English
Published: Universitas Islam Negeri Sunan Kalijaga Yogyakarta 2025-01-01
Series:JISKA (Jurnal Informatika Sunan Kalijaga)
Subjects:
Online Access:https://ejournal.uin-suka.ac.id/saintek/JISKA/article/view/4831
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Wildfires pose significant threats to ecosystems and human safety, necessitating effective monitoring techniques. Detecting forest fires based on images of forest conditions could be a breakthrough. But, the model built from imbalanced data leads to low accuracy. This research addresses the challenge of class imbalance in multi-class classification for forest fire detection using the EfficientNet-B1 model. This research explores the implementation of class weighting to enhance model performance, particularly focusing on minority classes namely: Fire, Smoke. A dataset of 7,331 training images, categorized into four classes. The results showed that employing the class weighting method achieved an accuracy of 90%. While training duration of 14 minutes and 45 seconds, outperforming the data augmentation method in terms of time efficiency. This study contributes to the development of more effective methods for forest fire monitoring and provides insights for future research in machine learning applications in environmental contexts.
ISSN:2527-5836
2528-0074