Use of an anthropomorphic hand phantom to verify the radiation intensity that is needed to modify the analog and digital radiographic quality

The radiology is a field of medicine that is in constantly expansion and advancing. This can be noticed with the transition from analog to digital radiology systems, it is important that professionals understand image formation in both systems in order to produce radiographies with diagnostic qualit...

Full description

Saved in:
Bibliographic Details
Main Authors: Caroline Kretezel Bandeira, Michele Patrícia Müller Mansur Vieira, José Eduardo dos Reis Felix
Format: Article
Language:English
Published: Brazilian Radiation Protection Society (Sociedade Brasileira de Proteção Radiológica, SBPR) 2015-05-01
Series:Brazilian Journal of Radiation Sciences
Subjects:
Online Access:https://bjrs.org.br/revista/index.php/REVISTA/article/view/169
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The radiology is a field of medicine that is in constantly expansion and advancing. This can be noticed with the transition from analog to digital radiology systems, it is important that professionals understand image formation in both systems in order to produce radiographies with diagnostic quality. Therefore, the objective of this work is to present the importance of radiological protection by changing values of technical parameters while the quality of radiographic imaging is sustained. An anthropomorphic hand phantom was built in order to obtain radiographies as it is necessary to respect the Brazilian regulations (Portaria 453/98) which forbids the use of radiation in patients for testing. Three analog and eight digital radiographies were obtained using fixed kVp and varying mAs. Each image was compared to the others acquired in the same location. Digital radiographies have shown that approximately 28% of change in mAs is necessary to change noise, whereas approximately 33,3% is necessary in the analog system to change density. The conclusion is that computerized systems need less x-ray intensity to modify image features and moreover can reduce the patient radiation doses. However, more testing must be conducted in different radiologic environments to confirm the results obtained in the present study.
ISSN:2319-0612