A Graph Embedding Method Based on Sparse Representation for Wireless Sensor Network Localization

In accordance with the problem that the traditional trilateral or multilateral estimation localization method is highly dependent on the proportion of beacon nodes and the measurement accuracy, an algorithm based on kernel sparse preserve projection (KSPP) is proposed in this dissertation. The Gauss...

Full description

Saved in:
Bibliographic Details
Main Authors: Xiaoyong Yan, Aiguo Song, Hao Yan
Format: Article
Language:English
Published: Wiley 2014-07-01
Series:International Journal of Distributed Sensor Networks
Online Access:https://doi.org/10.1155/2014/607943
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In accordance with the problem that the traditional trilateral or multilateral estimation localization method is highly dependent on the proportion of beacon nodes and the measurement accuracy, an algorithm based on kernel sparse preserve projection (KSPP) is proposed in this dissertation. The Gaussian kernel function is used to evaluate the similarity between nodes, and the location of the unknown nodes will be commonly decided by all the nodes within communication radius through selection of sparse preserve projection self-adaptation and maintaining of the topological structure between adjacent nodes. Therefore, the algorithm can effectively solve the nonlinear problem while ranging, and it becomes less affected by the measuring error and beacon nodes quantity.
ISSN:1550-1477