Mutations in the homeodomain of HOXD13 cause syndactyly type 1-c in two Chinese families.

<h4>Background</h4>Syndactyly type 1 (SD1) is an autosomal dominant limb malformation characterized in its classical form by complete or partial webbing between the third and fourth fingers and/or the second and third toes. Its four subtypes (a, b, c, and d) are defined based on variable...

Full description

Saved in:
Bibliographic Details
Main Authors: Limeng Dai, Dan Liu, Min Song, Xueqing Xu, Gang Xiong, Kang Yang, Kun Zhang, Hui Meng, Hong Guo, Yun Bai
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2014-01-01
Series:PLoS ONE
Online Access:https://journals.plos.org/plosone/article/file?id=10.1371/journal.pone.0096192&type=printable
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:<h4>Background</h4>Syndactyly type 1 (SD1) is an autosomal dominant limb malformation characterized in its classical form by complete or partial webbing between the third and fourth fingers and/or the second and third toes. Its four subtypes (a, b, c, and d) are defined based on variable phenotypes, but the responsible gene is yet to be identified. SD1-a has been mapped to chromosome 3p21.31 and SD1-b to 2q34-q36. SD1-c and SD1-d are very rare and, to our knowledge, no gene loci have been identified.<h4>Methods and results</h4>In two Chinese families with SD1-c, linkage and haplotype analyses mapped the disease locus to 2q31-2q32. Copy number variation (CNV) analysis, using array-based comparative genomic hybridization (array CGH), excluded the possibility of microdeletion or microduplication. Sequence analyses of related syndactyly genes in this region identified c.917G>A (p.R306Q) in the homeodomain of HOXD13 in family A. Analysis on family B identified the mutation c.916C>G (p.R306G) and therefore confirmed the genetic homogeneity. Luciferase assays indicated that these two mutations affected the transcriptional activation ability of HOXD13. The spectrum of HOXD13 mutations suggested a close genotype-phenotype correlation between the different types of HOXD13-Syndactyly. Overlaps of the various phenotypes were found both among and within families carrying the HOXD13 mutation.<h4>Conclusions</h4>Mutations (p.R306Q and p.R306G) in the homeodomain of HOXD13 cause SD1-c. There are affinities between SD1-c and synpolydactyly. Different limb malformations due to distinct classes of HOXD13 mutations should be considered as a continuum of phenotypes and further classification of syndactyly should be done based on phenotype and genotype.
ISSN:1932-6203