Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon

Thin films provide nanoscale confinement together with compatibility with photonic and microwave architectures, making them ideal candidates for chip-scale quantum devices. In this work, we propose a thin film fabrication approach yielding the epitaxial growth of Eu3+ doped Y2O3 on silicon. We combi...

Full description

Saved in:
Bibliographic Details
Main Authors: Serrano Diana, Harada Nao, Bachelet Romain, Blin Anna, Ferrier Alban, Tiranov Alexey, Zhong Tian, Goldner Philippe, Tallaire Alexandre
Format: Article
Language:English
Published: De Gruyter 2025-02-01
Series:Nanophotonics
Subjects:
Online Access:https://doi.org/10.1515/nanoph-2024-0682
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849693990071304192
author Serrano Diana
Harada Nao
Bachelet Romain
Blin Anna
Ferrier Alban
Tiranov Alexey
Zhong Tian
Goldner Philippe
Tallaire Alexandre
author_facet Serrano Diana
Harada Nao
Bachelet Romain
Blin Anna
Ferrier Alban
Tiranov Alexey
Zhong Tian
Goldner Philippe
Tallaire Alexandre
author_sort Serrano Diana
collection DOAJ
description Thin films provide nanoscale confinement together with compatibility with photonic and microwave architectures, making them ideal candidates for chip-scale quantum devices. In this work, we propose a thin film fabrication approach yielding the epitaxial growth of Eu3+ doped Y2O3 on silicon. We combine two of the most prominent thin film deposition techniques: chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). We report sub-megahertz optical homogeneous linewidths up to 8 K for the Eu3+ dopants in the film, and lowest value of 270 kHz. This result constitutes a ten-fold improvement with respect to previous reports on the same material, opening promising perspectives for the development of scalable and compact quantum devices containing rare-earth ions.
format Article
id doaj-art-77543c0d1e5c4ec187bf51ccf2e88a1f
institution DOAJ
issn 2192-8614
language English
publishDate 2025-02-01
publisher De Gruyter
record_format Article
series Nanophotonics
spelling doaj-art-77543c0d1e5c4ec187bf51ccf2e88a1f2025-08-20T03:20:13ZengDe GruyterNanophotonics2192-86142025-02-0114111809181510.1515/nanoph-2024-0682Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on siliconSerrano Diana0Harada Nao1Bachelet Romain2Blin Anna3Ferrier Alban4Tiranov Alexey5Zhong Tian6Goldner Philippe7Tallaire Alexandre8129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, France129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, FranceINL, Université de Lyon, Ecole Centrale de Lyon, CNRS UMR 5270, 69134Ecully, France129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, France129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, France129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, FrancePritzker School of Molecular Engineering, University of Chicago, 60637, Chicago, IL, USA129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, France129667Chimie ParisTech, PSL University, CNRS, Institut de Recherche de Chimie Paris, F-75005Paris, FranceThin films provide nanoscale confinement together with compatibility with photonic and microwave architectures, making them ideal candidates for chip-scale quantum devices. In this work, we propose a thin film fabrication approach yielding the epitaxial growth of Eu3+ doped Y2O3 on silicon. We combine two of the most prominent thin film deposition techniques: chemical vapor deposition (CVD) and molecular beam epitaxy (MBE). We report sub-megahertz optical homogeneous linewidths up to 8 K for the Eu3+ dopants in the film, and lowest value of 270 kHz. This result constitutes a ten-fold improvement with respect to previous reports on the same material, opening promising perspectives for the development of scalable and compact quantum devices containing rare-earth ions.https://doi.org/10.1515/nanoph-2024-0682thin filmrare-earthhomogeneous linewidthquantum technologies
spellingShingle Serrano Diana
Harada Nao
Bachelet Romain
Blin Anna
Ferrier Alban
Tiranov Alexey
Zhong Tian
Goldner Philippe
Tallaire Alexandre
Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
Nanophotonics
thin film
rare-earth
homogeneous linewidth
quantum technologies
title Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
title_full Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
title_fullStr Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
title_full_unstemmed Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
title_short Sub-MHz homogeneous linewidth in epitaxial Y2O3: Eu3+ thin film on silicon
title_sort sub mhz homogeneous linewidth in epitaxial y2o3 eu3 thin film on silicon
topic thin film
rare-earth
homogeneous linewidth
quantum technologies
url https://doi.org/10.1515/nanoph-2024-0682
work_keys_str_mv AT serranodiana submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT haradanao submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT bacheletromain submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT blinanna submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT ferrieralban submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT tiranovalexey submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT zhongtian submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT goldnerphilippe submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon
AT tallairealexandre submhzhomogeneouslinewidthinepitaxialy2o3eu3thinfilmonsilicon