Statistical Complexity Analysis of Sleep Stages

Studying sleep stages is crucial for understanding sleep architecture, which can help identify various health conditions, including insomnia, sleep apnea, and neurodegenerative diseases, allowing for better diagnosis and treatment interventions. In this paper, we explore the effectiveness of general...

Full description

Saved in:
Bibliographic Details
Main Authors: Cristina D. Duarte, Marianela Pacheco, Francisco R. Iaconis, Osvaldo A. Rosso, Gustavo Gasaneo, Claudio A. Delrieux
Format: Article
Language:English
Published: MDPI AG 2025-01-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/27/1/76
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1832588558932639744
author Cristina D. Duarte
Marianela Pacheco
Francisco R. Iaconis
Osvaldo A. Rosso
Gustavo Gasaneo
Claudio A. Delrieux
author_facet Cristina D. Duarte
Marianela Pacheco
Francisco R. Iaconis
Osvaldo A. Rosso
Gustavo Gasaneo
Claudio A. Delrieux
author_sort Cristina D. Duarte
collection DOAJ
description Studying sleep stages is crucial for understanding sleep architecture, which can help identify various health conditions, including insomnia, sleep apnea, and neurodegenerative diseases, allowing for better diagnosis and treatment interventions. In this paper, we explore the effectiveness of generalized weighted permutation entropy (GWPE) in distinguishing between different sleep stages from EEG signals. Using classification algorithms, we evaluate feature sets derived from both standard permutation entropy (PE) and GWPE to determine which set performs better in classifying sleep stages, demonstrating that GWPE significantly enhances sleep stage differentiation, particularly in identifying the transition between N1 and REM sleep. The results highlight the potential of GWPE as a valuable tool for understanding sleep neurophysiology and improving the diagnosis of sleep disorders.
format Article
id doaj-art-76cb38794e0845f0834fbe72f3ab0e51
institution Kabale University
issn 1099-4300
language English
publishDate 2025-01-01
publisher MDPI AG
record_format Article
series Entropy
spelling doaj-art-76cb38794e0845f0834fbe72f3ab0e512025-01-24T13:31:55ZengMDPI AGEntropy1099-43002025-01-012717610.3390/e27010076Statistical Complexity Analysis of Sleep StagesCristina D. Duarte0Marianela Pacheco1Francisco R. Iaconis2Osvaldo A. Rosso3Gustavo Gasaneo4Claudio A. Delrieux5Departamento de Física, Instituto de Física del Sur, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, ArgentinaDepartamento de Física, Instituto de Física del Sur, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, ArgentinaDepartamento de Física, Instituto de Física del Sur, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, ArgentinaInstituto de Física, Universidade Federal de Alagoas UFAL, Maceió 57072-900, BrazilDepartamento de Física, Instituto de Física del Sur, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, ArgentinaDepartamento de Ingeniería Eléctrica y Computadoras, Instituto de Ciencias e Ingeniería de la Computación, Universidad Nacional del Sur-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Bahía Blanca 8000, ArgentinaStudying sleep stages is crucial for understanding sleep architecture, which can help identify various health conditions, including insomnia, sleep apnea, and neurodegenerative diseases, allowing for better diagnosis and treatment interventions. In this paper, we explore the effectiveness of generalized weighted permutation entropy (GWPE) in distinguishing between different sleep stages from EEG signals. Using classification algorithms, we evaluate feature sets derived from both standard permutation entropy (PE) and GWPE to determine which set performs better in classifying sleep stages, demonstrating that GWPE significantly enhances sleep stage differentiation, particularly in identifying the transition between N1 and REM sleep. The results highlight the potential of GWPE as a valuable tool for understanding sleep neurophysiology and improving the diagnosis of sleep disorders.https://www.mdpi.com/1099-4300/27/1/76permutation entropystatistical complexitygeneralized weighted permutation entropysleep stages
spellingShingle Cristina D. Duarte
Marianela Pacheco
Francisco R. Iaconis
Osvaldo A. Rosso
Gustavo Gasaneo
Claudio A. Delrieux
Statistical Complexity Analysis of Sleep Stages
Entropy
permutation entropy
statistical complexity
generalized weighted permutation entropy
sleep stages
title Statistical Complexity Analysis of Sleep Stages
title_full Statistical Complexity Analysis of Sleep Stages
title_fullStr Statistical Complexity Analysis of Sleep Stages
title_full_unstemmed Statistical Complexity Analysis of Sleep Stages
title_short Statistical Complexity Analysis of Sleep Stages
title_sort statistical complexity analysis of sleep stages
topic permutation entropy
statistical complexity
generalized weighted permutation entropy
sleep stages
url https://www.mdpi.com/1099-4300/27/1/76
work_keys_str_mv AT cristinadduarte statisticalcomplexityanalysisofsleepstages
AT marianelapacheco statisticalcomplexityanalysisofsleepstages
AT franciscoriaconis statisticalcomplexityanalysisofsleepstages
AT osvaldoarosso statisticalcomplexityanalysisofsleepstages
AT gustavogasaneo statisticalcomplexityanalysisofsleepstages
AT claudioadelrieux statisticalcomplexityanalysisofsleepstages