Synthesis of Thinned Planar Antenna Array Using Multiobjective Normal Mutated Binary Cat Swarm Optimization

The process of thinned antenna array synthesis involves the optimization of a number of mutually conflicting parameters, such as peak sidelobe level, first null beam width, and number of active elements. This necessitates the development of a multiobjective optimization approach which will provide t...

Full description

Saved in:
Bibliographic Details
Main Authors: Lakshman Pappula, Debalina Ghosh
Format: Article
Language:English
Published: Wiley 2016-01-01
Series:Applied Computational Intelligence and Soft Computing
Online Access:http://dx.doi.org/10.1155/2016/4102156
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The process of thinned antenna array synthesis involves the optimization of a number of mutually conflicting parameters, such as peak sidelobe level, first null beam width, and number of active elements. This necessitates the development of a multiobjective optimization approach which will provide the best compromised solution based on the application at hand. In this paper, a novel multiobjective normal mutated binary cat swarm optimization (MO-NMBCSO) is developed and proposed for the synthesis of thinned planar antenna arrays. Through this method, a high degree of flexibility is introduced to the realm of thinned array design. A Pareto-optimal front containing all the probable designs is obtained in this process. Targeted solutions may be chosen from the Pareto front to satisfy the different requirements demonstrating the superiority of the proposed approach over multiobjective binary particle swarm optimization method (MO-BPSO). A comparative study is carried out to quantify the performance of the two algorithms using two performance metrics.
ISSN:1687-9724
1687-9732