The Impact of the Girdle Waist Radius on the Radiation Characteristics of the Relativistic Electron in Cross-Collision with the Tightly Focused Linearly Polarized Laser
Under the framework of classical electrodynamics, this article investigates the nonlinear Thomson scattering generated by the cross-collision between a tightly focused linearly polarized Gaussian laser pulse and a relativistic electron through numerical simulation and emulation. The oscillation dire...
Saved in:
| Main Authors: | , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
MDPI AG
2025-05-01
|
| Series: | Applied Sciences |
| Subjects: | |
| Online Access: | https://www.mdpi.com/2076-3417/15/9/5056 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Under the framework of classical electrodynamics, this article investigates the nonlinear Thomson scattering generated by the cross-collision between a tightly focused linearly polarized Gaussian laser pulse and a relativistic electron through numerical simulation and emulation. The oscillation direction and emission angle of the electron’s trajectory are influenced by the beam waist radius and the delay time. The spatial radiation distribution of electrons exhibits a comet-shaped pattern, with the radiation being concentrated in the forward position. This is attributed to the high laser intensity at the focus, resulting in intense electron motion. As the beam waist radius keeps increasing continuously, the maximum radiation polar angle in the spatial distribution decreases. The time spectrum exhibits a symmetrical three-peak structure, with a high secondary peak. Meanwhile, the supercontinuum spectrum gradually transforms into a multi-peak distribution spectrum. In the multi-peak mode, the main peak and the secondary peak will interchange during the increase in the waist radius, generating rays with higher frequencies and energies. The aforementioned research findings reveal a portion of the mechanism of the nonlinear Thomson scattering theory and are beneficial for generating X-rays of higher quality. |
|---|---|
| ISSN: | 2076-3417 |