Infinite Dimensional Maximal Torus Revisited

Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula> be the maximal torus of a set of <inli...

Full description

Saved in:
Bibliographic Details
Main Authors: Mohamed Lemine H. Bouleryah, Akram Ali, Piscoran Laurian-Ioan
Format: Article
Language:English
Published: MDPI AG 2024-12-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/12/23/3829
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula> be the maximal torus of a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></semantics></math></inline-formula> unitary diagonal matrices. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> be a collection of all maps that rigidly rotate every circle of latitude of the sphere with a fixed angle. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> is also a maximal torus, and we shall prove in this paper that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> is the topological limit inf of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula>.
ISSN:2227-7390