Infinite Dimensional Maximal Torus Revisited
Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula> be the maximal torus of a set of <inli...
Saved in:
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
MDPI AG
2024-12-01
|
Series: | Mathematics |
Subjects: | |
Online Access: | https://www.mdpi.com/2227-7390/12/23/3829 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula> be the maximal torus of a set of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>m</mi><mo>×</mo><mi>m</mi></mrow></semantics></math></inline-formula> unitary diagonal matrices. Let <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> be a collection of all maps that rigidly rotate every circle of latitude of the sphere with a fixed angle. <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> is also a maximal torus, and we shall prove in this paper that <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mi mathvariant="script">T</mi></semantics></math></inline-formula> is the topological limit inf of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>T</mi><mi>m</mi></msup></semantics></math></inline-formula>. |
---|---|
ISSN: | 2227-7390 |