A prediction rigidity formalism for low-cost uncertainties in trained neural networks
Quantifying the uncertainty of regression models is essential to ensure their reliability, particularly since their application often extends beyond their training domain. Based on the solution of a constrained optimization problem, this work proposes ‘prediction rigidities’ as a formalism to obtain...
Saved in:
| Main Authors: | , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
IOP Publishing
2024-01-01
|
| Series: | Machine Learning: Science and Technology |
| Subjects: | |
| Online Access: | https://doi.org/10.1088/2632-2153/ad805f |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|