Lactobacillus rhamnosus-derived extracellular vesicles influence calcium deposition in a model of breast cancer intraductal calcium stress
Summary: Extracellular calcium export by the breast ductal epithelium is crucial during lactation and plays a significant role in breast cancer progression. Intraductal calcium deposition is a hallmark of aggressive premalignant lesions. This study tested the hypothesis that microbiome-derived extra...
Saved in:
| Main Authors: | , , , , , , , , , , , , , , , , , , , |
|---|---|
| Format: | Article |
| Language: | English |
| Published: |
Elsevier
2025-06-01
|
| Series: | iScience |
| Subjects: | |
| Online Access: | http://www.sciencedirect.com/science/article/pii/S2589004225007990 |
| Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
| Summary: | Summary: Extracellular calcium export by the breast ductal epithelium is crucial during lactation and plays a significant role in breast cancer progression. Intraductal calcium deposition is a hallmark of aggressive premalignant lesions. This study tested the hypothesis that microbiome-derived extracellular vesicles (EVs) influence calcium modulation in premalignant breast cancer lesions. Based on the analysis of plasma, serum, saliva, and tissue collected from breast cancer patients and controls (N = 150), Lactobacillus rhamnosus (Lr) was chosen as the model microbiota. In a BT-474 human breast cancer cell line monolayer culture under acute calcium stress, Lr EVs enhanced intracellular calcium intake. In a BT474 3D spheroid model under chronic calcium stress, Lr EVs increased extracellular calcium deposition and mRNA expression of calcium export channel plasma membrane calcium-transporting ATPase 2 (PMCA2) and stromal interaction molecule 1 (STIM1) in a dose-dependent manner. We propose that Lr EVs influence calcium regulation and mineral deposition, thereby affecting premalignant breast cancer progression. |
|---|---|
| ISSN: | 2589-0042 |