On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization

Earlier, a significant enhancement of the nondipole parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow><...

Full description

Saved in:
Bibliographic Details
Main Authors: Valeriy K. Dolmatov, Steven T. Manson
Format: Article
Language:English
Published: MDPI AG 2024-11-01
Series:Atoms
Subjects:
Online Access:https://www.mdpi.com/2218-2004/12/11/58
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850149856261177344
author Valeriy K. Dolmatov
Steven T. Manson
author_facet Valeriy K. Dolmatov
Steven T. Manson
author_sort Valeriy K. Dolmatov
collection DOAJ
description Earlier, a significant enhancement of the nondipole parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>+</mo><mn>3</mn><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula> in the photoelectron angular distribution for Ne <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>p</mi></mrow></semantics></math></inline-formula> photoionization was predicted, owing to resonance interference between dipole (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mn>1</mn></mrow></semantics></math></inline-formula>) and quadrupole (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mn>2</mn></mrow></semantics></math></inline-formula>) transitions. This enhancement manifests as narrow resonance spikes in the parameters due to the low-energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>3</mn><mi>p</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>4</mn><mi>p</mi></mrow></semantics></math></inline-formula> dipole, as well as the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>3</mn><mi>d</mi></mrow></semantics></math></inline-formula> quadrupole autoionizing resonances. Given the unique nature of this predicted enhancement, it requires further validation, specifically regarding whether these narrow spikes in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> will or will not retain their values for experimental observation if one accounts for a typical finite frequency spread in the ionizing radiation. To address this, we revisit the previous study, now incorporating the effect of frequency spread in the ionizing radiation, assuming a spread as large as 5 meV at the half-maximum of the radiation’s intensity. In the present paper we demonstrate that while the frequency spread does affect the resonance enhancement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, these parameters still retain quantitatively significant values to be observed experimentally. The corresponding calculations were performed using the random phase approximation with exchange, which accounts for interchannel coupling in both dipole and quadrupole photoionization amplitudes.
format Article
id doaj-art-75cd701b8dcf4978b27032f9ba5d654c
institution OA Journals
issn 2218-2004
language English
publishDate 2024-11-01
publisher MDPI AG
record_format Article
series Atoms
spelling doaj-art-75cd701b8dcf4978b27032f9ba5d654c2025-08-20T02:26:45ZengMDPI AGAtoms2218-20042024-11-0112115810.3390/atoms12110058On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> PhotoionizationValeriy K. Dolmatov0Steven T. Manson1Department of Chemistry and Physics, University of North Alabama, Florence, AL 35632, USADepartment of Chemistry and Physics, University of North Alabama, Florence, AL 35632, USAEarlier, a significant enhancement of the nondipole parameters <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>=</mo><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub><mo>+</mo><mn>3</mn><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></mrow></semantics></math></inline-formula> in the photoelectron angular distribution for Ne <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>p</mi></mrow></semantics></math></inline-formula> photoionization was predicted, owing to resonance interference between dipole (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mn>1</mn></mrow></semantics></math></inline-formula>) and quadrupole (<inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>E</mi><mn>2</mn></mrow></semantics></math></inline-formula>) transitions. This enhancement manifests as narrow resonance spikes in the parameters due to the low-energy <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>3</mn><mi>p</mi></mrow></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>4</mn><mi>p</mi></mrow></semantics></math></inline-formula> dipole, as well as the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mn>2</mn><mi>s</mi><mo>→</mo><mn>3</mn><mi>d</mi></mrow></semantics></math></inline-formula> quadrupole autoionizing resonances. Given the unique nature of this predicted enhancement, it requires further validation, specifically regarding whether these narrow spikes in <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> will or will not retain their values for experimental observation if one accounts for a typical finite frequency spread in the ionizing radiation. To address this, we revisit the previous study, now incorporating the effect of frequency spread in the ionizing radiation, assuming a spread as large as 5 meV at the half-maximum of the radiation’s intensity. In the present paper we demonstrate that while the frequency spread does affect the resonance enhancement of <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>γ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>δ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula> and <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>ζ</mi><mrow><mn>2</mn><mi>p</mi></mrow></msub></semantics></math></inline-formula>, these parameters still retain quantitatively significant values to be observed experimentally. The corresponding calculations were performed using the random phase approximation with exchange, which accounts for interchannel coupling in both dipole and quadrupole photoionization amplitudes.https://www.mdpi.com/2218-2004/12/11/58photoinizationnondipole photoelectron angular asymmetry<i>E</i>1-<i>E</i>2 interference
spellingShingle Valeriy K. Dolmatov
Steven T. Manson
On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
Atoms
photoinization
nondipole photoelectron angular asymmetry
<i>E</i>1-<i>E</i>2 interference
title On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
title_full On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
title_fullStr On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
title_full_unstemmed On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
title_short On Resonance Enhancement of <i>E</i>1-<i>E</i>2 Nondipole Photoelectron Asymmetries in Low-Energy Ne 2<i>p</i> Photoionization
title_sort on resonance enhancement of i e i 1 i e i 2 nondipole photoelectron asymmetries in low energy ne 2 i p i photoionization
topic photoinization
nondipole photoelectron angular asymmetry
<i>E</i>1-<i>E</i>2 interference
url https://www.mdpi.com/2218-2004/12/11/58
work_keys_str_mv AT valeriykdolmatov onresonanceenhancementofiei1iei2nondipolephotoelectronasymmetriesinlowenergyne2ipiphotoionization
AT steventmanson onresonanceenhancementofiei1iei2nondipolephotoelectronasymmetriesinlowenergyne2ipiphotoionization