In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands

Abstract: The pursuit of ex vivo erythrocyte generation has led to the development of various culture systems that simulate the bone marrow microenvironment. However, these models often fail to fully replicate the hematopoietic niche's complex dynamics. In our research, we use a comprehensive s...

Full description

Saved in:
Bibliographic Details
Main Authors: Christian A. Di Buduo, Francesca Careddu, Samuele Metti, Marco Lunghi, Santo Diprima, Virginia Camilotto, Giovanna Bruni, Umberto Gianelli, Delfina Tosi, Cesare Perotti, Claudia Del Fante, Mario Cazzola, Paola Braghetta, David L. Kaplan, Giampaolo Minetti, Luca Malcovati, Alessandra Balduini
Format: Article
Language:English
Published: Elsevier 2025-05-01
Series:Blood Advances
Online Access:http://www.sciencedirect.com/science/article/pii/S2473952925001077
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1850173722550337536
author Christian A. Di Buduo
Francesca Careddu
Samuele Metti
Marco Lunghi
Santo Diprima
Virginia Camilotto
Giovanna Bruni
Umberto Gianelli
Delfina Tosi
Cesare Perotti
Claudia Del Fante
Mario Cazzola
Paola Braghetta
David L. Kaplan
Giampaolo Minetti
Luca Malcovati
Alessandra Balduini
author_facet Christian A. Di Buduo
Francesca Careddu
Samuele Metti
Marco Lunghi
Santo Diprima
Virginia Camilotto
Giovanna Bruni
Umberto Gianelli
Delfina Tosi
Cesare Perotti
Claudia Del Fante
Mario Cazzola
Paola Braghetta
David L. Kaplan
Giampaolo Minetti
Luca Malcovati
Alessandra Balduini
author_sort Christian A. Di Buduo
collection DOAJ
description Abstract: The pursuit of ex vivo erythrocyte generation has led to the development of various culture systems that simulate the bone marrow microenvironment. However, these models often fail to fully replicate the hematopoietic niche's complex dynamics. In our research, we use a comprehensive strategy that emphasizes physiological red blood cell (RBC) differentiation using a minimal cytokine regimen. A key innovation in our approach is the integration of a 3-dimensional (3D) silk-based scaffold engineered to mimic both the physical and chemical properties of human bone marrow. This scaffold facilitates critical macrophage-RBC interactions and incorporates fibronectin functionalization to support the formation of erythroblastic island (EBI)–like niches. We observed diverse stages of erythroblast maturation within these niches, driven by the activation of autophagy, which promotes organelle clearance and membrane remodeling. This process leads to reduced surface integrin expression and significantly enhances RBC enucleation. Using a specialized bioreactor chamber, millions of RBCs can be detached from the EBIs and collected in transfusion bags via dynamic perfusion. Inhibition of autophagy through pharmacological agents or α4 integrin blockade disrupted EBI formation, preventing cells from completing their final morphological transformations, having them trapped in the erythroblast stage. Our findings underscore the importance of the bone marrow niche in maintaining the structural integrity of EBIs and highlight the critical role of autophagy in facilitating organelle clearance during RBC maturation. RNA sequencing analysis further confirmed that these processes are uniquely supported by the 3D silk scaffold, which is essential for enhancing RBC production ex vivo.
format Article
id doaj-art-7560fdce919a4b05ab22145479dfdab7
institution OA Journals
issn 2473-9529
language English
publishDate 2025-05-01
publisher Elsevier
record_format Article
series Blood Advances
spelling doaj-art-7560fdce919a4b05ab22145479dfdab72025-08-20T02:19:47ZengElsevierBlood Advances2473-95292025-05-01992192220610.1182/bloodadvances.2024014905In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islandsChristian A. Di Buduo0Francesca Careddu1Samuele Metti2Marco Lunghi3Santo Diprima4Virginia Camilotto5Giovanna Bruni6Umberto Gianelli7Delfina Tosi8Cesare Perotti9Claudia Del Fante10Mario Cazzola11Paola Braghetta12David L. Kaplan13Giampaolo Minetti14Luca Malcovati15Alessandra Balduini16Department of Molecular Medicine, University of Pavia, Pavia, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, ItalyDepartment of Molecular Medicine, University of Padova, Padova, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, ItalyBioinformatic Division, Center for Omics Sciences, Istituto di Ricovero e Cura a Carattere Scientifico San Raffaele Scientific Institute, Milan, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, ItalyCenter for Colloid and Surface Science-Department of Chemistry, Physical-Chemistry Section, University of Pavia, Pavia, ItalyDepartment of Health Sciences, University of Milan, Struttura Complessa di Anatomia Patologica, Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo, Milan, ItalyDepartment of Health Sciences, University of Milan, Struttura Complessa di Anatomia Patologica, Azienda Socio-Sanitaria Territoriale-Santi Paolo e Carlo, Milan, ItalyDivision of Immunohaematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, ItalyDivision of Immunohaematology and Transfusion Service, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, ItalyDepartment of Molecular Medicine, University of Padova, Padova, ItalyDepartment of Biomedical Engineering, Tufts University, Medford, MADepartment of Biology and Biotechnology “Lazzaro Spallanzani,” University of Pavia, Pavia, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Hematology Oncology, Hematology Unit, Fondazione Istituto di Ricovero e Cura a Carattere Scientifico Policlinico San Matteo, Pavia, ItalyDepartment of Molecular Medicine, University of Pavia, Pavia, Italy; Department of Biomedical Engineering, Tufts University, Medford, MA; Correspondence: Alessandra Balduini, Department of Molecular Medicine, University of Pavia, Viale Golgi n. 19, 27100, Pavia, Italy;Abstract: The pursuit of ex vivo erythrocyte generation has led to the development of various culture systems that simulate the bone marrow microenvironment. However, these models often fail to fully replicate the hematopoietic niche's complex dynamics. In our research, we use a comprehensive strategy that emphasizes physiological red blood cell (RBC) differentiation using a minimal cytokine regimen. A key innovation in our approach is the integration of a 3-dimensional (3D) silk-based scaffold engineered to mimic both the physical and chemical properties of human bone marrow. This scaffold facilitates critical macrophage-RBC interactions and incorporates fibronectin functionalization to support the formation of erythroblastic island (EBI)–like niches. We observed diverse stages of erythroblast maturation within these niches, driven by the activation of autophagy, which promotes organelle clearance and membrane remodeling. This process leads to reduced surface integrin expression and significantly enhances RBC enucleation. Using a specialized bioreactor chamber, millions of RBCs can be detached from the EBIs and collected in transfusion bags via dynamic perfusion. Inhibition of autophagy through pharmacological agents or α4 integrin blockade disrupted EBI formation, preventing cells from completing their final morphological transformations, having them trapped in the erythroblast stage. Our findings underscore the importance of the bone marrow niche in maintaining the structural integrity of EBIs and highlight the critical role of autophagy in facilitating organelle clearance during RBC maturation. RNA sequencing analysis further confirmed that these processes are uniquely supported by the 3D silk scaffold, which is essential for enhancing RBC production ex vivo.http://www.sciencedirect.com/science/article/pii/S2473952925001077
spellingShingle Christian A. Di Buduo
Francesca Careddu
Samuele Metti
Marco Lunghi
Santo Diprima
Virginia Camilotto
Giovanna Bruni
Umberto Gianelli
Delfina Tosi
Cesare Perotti
Claudia Del Fante
Mario Cazzola
Paola Braghetta
David L. Kaplan
Giampaolo Minetti
Luca Malcovati
Alessandra Balduini
In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
Blood Advances
title In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
title_full In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
title_fullStr In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
title_full_unstemmed In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
title_short In vitro studies of human erythropoiesis using a 3D silk-based bone marrow model that generates erythroblastic islands
title_sort in vitro studies of human erythropoiesis using a 3d silk based bone marrow model that generates erythroblastic islands
url http://www.sciencedirect.com/science/article/pii/S2473952925001077
work_keys_str_mv AT christianadibuduo invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT francescacareddu invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT samuelemetti invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT marcolunghi invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT santodiprima invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT virginiacamilotto invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT giovannabruni invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT umbertogianelli invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT delfinatosi invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT cesareperotti invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT claudiadelfante invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT mariocazzola invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT paolabraghetta invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT davidlkaplan invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT giampaolominetti invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT lucamalcovati invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands
AT alessandrabalduini invitrostudiesofhumanerythropoiesisusinga3dsilkbasedbonemarrowmodelthatgenerateserythroblasticislands