Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots

Abstract Quantum dots leverage quantum confinement to modify the electronic structure of materials, separating electronic transitions from the composition of the corresponding bulk material. With ternary quantum dots, the composition may be varied continuously so that both composition and size may b...

Full description

Saved in:
Bibliographic Details
Main Authors: Beiye C. Li, Kailai Lin, Ping-Jui E. Wu, Aritrajit Gupta, Kaiyue Peng, Siddhartha Sohoni, Justin C. Ondry, Zirui Zhou, Caitlin C. Bellora, Young Jay Ryu, Stella Chariton, David J. Gosztola, Vitali B. Prakapenka, Richard D. Schaller, Dmitri V. Talapin, Eran Rabani, Gregory S. Engel
Format: Article
Language:English
Published: Nature Portfolio 2025-05-01
Series:Nature Communications
Online Access:https://doi.org/10.1038/s41467-025-58800-8
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849309729961017344
author Beiye C. Li
Kailai Lin
Ping-Jui E. Wu
Aritrajit Gupta
Kaiyue Peng
Siddhartha Sohoni
Justin C. Ondry
Zirui Zhou
Caitlin C. Bellora
Young Jay Ryu
Stella Chariton
David J. Gosztola
Vitali B. Prakapenka
Richard D. Schaller
Dmitri V. Talapin
Eran Rabani
Gregory S. Engel
author_facet Beiye C. Li
Kailai Lin
Ping-Jui E. Wu
Aritrajit Gupta
Kaiyue Peng
Siddhartha Sohoni
Justin C. Ondry
Zirui Zhou
Caitlin C. Bellora
Young Jay Ryu
Stella Chariton
David J. Gosztola
Vitali B. Prakapenka
Richard D. Schaller
Dmitri V. Talapin
Eran Rabani
Gregory S. Engel
author_sort Beiye C. Li
collection DOAJ
description Abstract Quantum dots leverage quantum confinement to modify the electronic structure of materials, separating electronic transitions from the composition of the corresponding bulk material. With ternary quantum dots, the composition may be varied continuously so that both composition and size may be used to tune the bandgap. As composition influences electron-phonon coupling which in turn governs relaxation dynamics, the composition of ternary quantum dots may be adjusted to change dynamics. Here, we show that exciton-phonon coupling and phonon-assisted exciton relaxation dynamics remain strongly correlated to material composition in ternary In0.62Ga0.38P/ZnS and In0.35Ga0.65P/ZnS quantum dots using both experimental two-dimensional electronic spectroscopy measurements and quantum dynamical simulations. Theoretical calculations show that alloyed In1-xGaxP quantum dots have more complex exciton level structure than parent InP quantum dots. We identify a slower hot exciton cooling rate in In0.62Ga0.38P/ZnS, attributed to the presence of ‘energy-retaining’ valley exciton states with strong exciton-phonon coupling. Experimental quantum beating maps reveal a more localized quantum beat pattern for In0.35Ga0.65P/ZnS quantum dots, which may relate to the increased number of ‘dim’ exciton levels with reduced spacings. These findings highlight that exciton relaxation dynamics and exciton-phonon coupling in an alloyed In1-xGaxP quantum dot system are composition-dependent.
format Article
id doaj-art-75415d3ffdf345449c258b0a711e93e4
institution Kabale University
issn 2041-1723
language English
publishDate 2025-05-01
publisher Nature Portfolio
record_format Article
series Nature Communications
spelling doaj-art-75415d3ffdf345449c258b0a711e93e42025-08-20T03:53:58ZengNature PortfolioNature Communications2041-17232025-05-0116111110.1038/s41467-025-58800-8Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dotsBeiye C. Li0Kailai Lin1Ping-Jui E. Wu2Aritrajit Gupta3Kaiyue Peng4Siddhartha Sohoni5Justin C. Ondry6Zirui Zhou7Caitlin C. Bellora8Young Jay Ryu9Stella Chariton10David J. Gosztola11Vitali B. Prakapenka12Richard D. Schaller13Dmitri V. Talapin14Eran Rabani15Gregory S. Engel16Department of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, University of California, BerkeleyDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, University of California, BerkeleyDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoCenter for Advanced Radiation Sources, The University of ChicagoCenter for Advanced Radiation Sources, The University of ChicagoCenter for Nanoscale Materials, Argonne National LaboratoryCenter for Advanced Radiation Sources, The University of ChicagoCenter for Nanoscale Materials, Argonne National LaboratoryDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoDepartment of Chemistry, University of California, BerkeleyDepartment of Chemistry, James Franck Institute, and Pritzker School of Molecular Engineering, The University of ChicagoAbstract Quantum dots leverage quantum confinement to modify the electronic structure of materials, separating electronic transitions from the composition of the corresponding bulk material. With ternary quantum dots, the composition may be varied continuously so that both composition and size may be used to tune the bandgap. As composition influences electron-phonon coupling which in turn governs relaxation dynamics, the composition of ternary quantum dots may be adjusted to change dynamics. Here, we show that exciton-phonon coupling and phonon-assisted exciton relaxation dynamics remain strongly correlated to material composition in ternary In0.62Ga0.38P/ZnS and In0.35Ga0.65P/ZnS quantum dots using both experimental two-dimensional electronic spectroscopy measurements and quantum dynamical simulations. Theoretical calculations show that alloyed In1-xGaxP quantum dots have more complex exciton level structure than parent InP quantum dots. We identify a slower hot exciton cooling rate in In0.62Ga0.38P/ZnS, attributed to the presence of ‘energy-retaining’ valley exciton states with strong exciton-phonon coupling. Experimental quantum beating maps reveal a more localized quantum beat pattern for In0.35Ga0.65P/ZnS quantum dots, which may relate to the increased number of ‘dim’ exciton levels with reduced spacings. These findings highlight that exciton relaxation dynamics and exciton-phonon coupling in an alloyed In1-xGaxP quantum dot system are composition-dependent.https://doi.org/10.1038/s41467-025-58800-8
spellingShingle Beiye C. Li
Kailai Lin
Ping-Jui E. Wu
Aritrajit Gupta
Kaiyue Peng
Siddhartha Sohoni
Justin C. Ondry
Zirui Zhou
Caitlin C. Bellora
Young Jay Ryu
Stella Chariton
David J. Gosztola
Vitali B. Prakapenka
Richard D. Schaller
Dmitri V. Talapin
Eran Rabani
Gregory S. Engel
Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
Nature Communications
title Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
title_full Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
title_fullStr Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
title_full_unstemmed Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
title_short Exciton-phonon coupling and phonon-assisted exciton relaxation dynamics in In1-xGaxP quantum dots
title_sort exciton phonon coupling and phonon assisted exciton relaxation dynamics in in1 xgaxp quantum dots
url https://doi.org/10.1038/s41467-025-58800-8
work_keys_str_mv AT beiyecli excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT kailailin excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT pingjuiewu excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT aritrajitgupta excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT kaiyuepeng excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT siddharthasohoni excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT justincondry excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT ziruizhou excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT caitlincbellora excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT youngjayryu excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT stellachariton excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT davidjgosztola excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT vitalibprakapenka excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT richarddschaller excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT dmitrivtalapin excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT eranrabani excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots
AT gregorysengel excitonphononcouplingandphononassistedexcitonrelaxationdynamicsinin1xgaxpquantumdots