Implicit One-Step Block Hybrid Third-Derivative Method for the Direct Solution of Initial Value Problems of Second-Order Ordinary Differential Equations
A new one-step block method with generalized three hybrid points for solving initial value problems of second-order ordinary differential equations directly is proposed. In deriving this method, a power series approximate function is interpolated at {xn,xn+r} while its second and third derivatives a...
Saved in:
Main Authors: | , |
---|---|
Format: | Article |
Language: | English |
Published: |
Wiley
2017-01-01
|
Series: | Journal of Applied Mathematics |
Online Access: | http://dx.doi.org/10.1155/2017/8510948 |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | A new one-step block method with generalized three hybrid points for solving initial value problems of second-order ordinary differential equations directly is proposed. In deriving this method, a power series approximate function is interpolated at {xn,xn+r} while its second and third derivatives are collocated at all points {xn,xn+r,xn+s,xn+t,xn+1} in the given interval. The proposed method is then tested on initial value problems of second-order ordinary differential equations solved by other methods previously. The numerical results confirm the superiority of the new method to the existing methods in terms of accuracy. |
---|---|
ISSN: | 1110-757X 1687-0042 |