Synergistic effect of pH-sensitive PEGylated RG3-chitosan prodrug nanoparticles encapsulated celastrol on pancreatic cancer

Celastrol (Cel) is a potential anticancer therapeutic candidate, but its limited practical applicability is due to its low solubility, poor tumor selectivity, and cytotoxicity. Clinically, ginsenoside Rg3 (RG3) is typically combined with chemotherapy to enhance antitumor effects and reduce side effe...

Full description

Saved in:
Bibliographic Details
Main Authors: Zheng Zhang, Jiaxing Wang, Xiaofang Li, Lingzhou Zhao, Junwei Zhao, Mengjiao Su, Xiangxiang Wu, Huahui Zeng
Format: Article
Language:English
Published: Taylor & Francis Group 2025-12-01
Series:Drug Delivery
Subjects:
Online Access:https://www.tandfonline.com/doi/10.1080/10717544.2025.2464189
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Celastrol (Cel) is a potential anticancer therapeutic candidate, but its limited practical applicability is due to its low solubility, poor tumor selectivity, and cytotoxicity. Clinically, ginsenoside Rg3 (RG3) is typically combined with chemotherapy to enhance antitumor effects and reduce side effects. Herein, we developed novel pH-sensitive prodrug nanoparticles (NPs) containing RG3 and Cel for the synergistic treatment of pancreatic cancer (PC). Amphiphilic prodrug, a PEGylated chitosan oligosaccharide coupled with RG3 via Schiff base bond, was self-assembled with hydrophobic Cel into NPs with drug loadings of 2.12% (Cel) and 1.63% (RG3). NPs exhibited a suitable particle size of 124.01 nm, zeta potential of −39.89 mV and good physical stability. In addition, NPs also showed a controlled drug release when the Schiff base bonds were hydrolyzed in the acidic environment. In Pan02 tumor-bearing mice, NPs exhibited a high accumulation in tumor tissues and prolonged blood circulation time. Furthermore, NPs could more effectively inhibit tumor growth and reduce systemic toxicity, compared with the free Cel, RG3, prodrug, and Cel + RG3. The results indicated that the NPs could provide a safe and promising nanoplatform for PC therapy.
ISSN:1071-7544
1521-0464