Efficient Multi-Target Localization Using Dynamic UAV Clusters

This paper proposes a dynamic unmanned aerial vehicle (UAV) clustering model for multi-target localization in complex 3D environments, where mobility-aware cluster formation is integrated to enhance collaborative localization accuracy. We derive the Cramér–Rao lower bound (CRLB) for localization per...

Full description

Saved in:
Bibliographic Details
Main Authors: Wei Gong, Shuhan Lou, Liyuan Deng, Peng Yi, Yiguang Hong
Format: Article
Language:English
Published: MDPI AG 2025-04-01
Series:Sensors
Subjects:
Online Access:https://www.mdpi.com/1424-8220/25/9/2857
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper proposes a dynamic unmanned aerial vehicle (UAV) clustering model for multi-target localization in complex 3D environments, where mobility-aware cluster formation is integrated to enhance collaborative localization accuracy. We derive the Cramér–Rao lower bound (CRLB) for localization performance analysis under measurement and motion-induced uncertainties. To solve the NP-hard clustering problem, we develop the MDQPSO-ASA algorithm, which combines multi-swarm discrete quantum-inspired particle swarm optimization with adaptive simulated annealing, incorporating a repair mechanism to satisfy spatial and cardinality constraints. Simulation results demonstrate the algorithm’s superiority in localization accuracy, computational efficiency, and adaptability to varying UAV/target scales compared to baseline methods. The developed algorithm provides an effective solution for resource-constrained collaborative localization tasks in practical scenarios.
ISSN:1424-8220