Optimum Height and Tilt Angle of the Solar Receiver for a 30 kWe Solar Tower Power Plant for the Electricity Production in the Sahelian Zone

This work investigated the prediction of the optimum height and tilt angle of the solar receiver of a 30 kWe solar tower power plant for the electricity production in the Sahelian zone. Initially, the solar field is sized to determine the total reflecting surface area of the mirrors and the number o...

Full description

Saved in:
Bibliographic Details
Main Authors: Kory Faye, Ababacar Thiam, Mactar Faye
Format: Article
Language:English
Published: Wiley 2021-01-01
Series:International Journal of Photoenergy
Online Access:http://dx.doi.org/10.1155/2021/1961134
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This work investigated the prediction of the optimum height and tilt angle of the solar receiver of a 30 kWe solar tower power plant for the electricity production in the Sahelian zone. Initially, the solar field is sized to determine the total reflecting surface area of the mirrors and the number of heliostats. A PS10-like radially staggered heliostat field is used to design the heliostat layout in the field using a Matlab code. The concentrated solar flux at the input of the receiver was determined using Soltrace software by the Monte Carlo ray tracing (MCRT) method. The sizing results show that the total reflecting surface area is 350 m2 for an optical efficiency of 76.4% and a reference DNI of 600 W/m2. The solar field layout indicates 175 heliostats of 2 m2 surface area and 1.5 m height each. The simulation results show that the optimum height and tilt angle of the solar receiver are 26 m and 65°, respectively.
ISSN:1110-662X
1687-529X