Radio Mean Labeling Algorithm, Its Complexity and Existence Results

Radio mean labeling of a connected graph <i>G</i> is an assignment of distinct positive integers to the vertices of <i>G</i> satisfying a mathematical constraint called radio mean condition. The maximum label assigned to any vertex of <i>G</i> is called the <in...

Full description

Saved in:
Bibliographic Details
Main Authors: Meera Saraswathi, K. N. Meera, Yuqing Lin
Format: Article
Language:English
Published: MDPI AG 2025-06-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/13/13/2057
Tags: Add Tag
No Tags, Be the first to tag this record!
_version_ 1849704234260365312
author Meera Saraswathi
K. N. Meera
Yuqing Lin
author_facet Meera Saraswathi
K. N. Meera
Yuqing Lin
author_sort Meera Saraswathi
collection DOAJ
description Radio mean labeling of a connected graph <i>G</i> is an assignment of distinct positive integers to the vertices of <i>G</i> satisfying a mathematical constraint called radio mean condition. The maximum label assigned to any vertex of <i>G</i> is called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>p</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> of the radio mean labeling. The minimum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>p</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> of all feasible radio mean labelings of <i>G</i> is the radio mean number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>m</mi><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In our previous study, we proved that if <i>G</i> has order <i>n</i>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>m</mi><mi>n</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mspace width="4pt"></mspace><mi>r</mi><mi>m</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>]</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> is a path of order <i>n</i>. All graphs of diameters 1, 2 and 3 have the radio mean number equal to order <i>n</i>. However, they are not the only graphs on <i>n</i> vertices with radio mean number <i>n</i>. Graphs isomorphic to path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> are the graphs having the maximum diameter among the set of all graphs of order <i>n</i> and they possess the maximum feasible radio mean number. In this paper, we show that, for any integer in the range of achievable radio mean numbers, there always exists a graph of order <i>n</i> with the given integer as its radio mean number. This is approached by introducing a special type of tree whose construction is detailed in the article. The task of assigning radio mean labels to a graph can be considered as an optimization problem. This paper critiques the limitations of existing Integer Linear Programming (ILP) models for assigning radio mean labeling to graphs and proposes a new ILP model. The existing ILP model does not guarantee that the vertex labels are distinct, positive and satisfy the radio mean condition, prompting the need for an improved approach. We propose a new ILP model which involves <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>n</mi><mn>2</mn></msup></semantics></math></inline-formula> constraints is the input graph’s order is <i>n</i>. We obtain a radio mean labeling of cycle of order 10 using the new ILP. In our previous study, we showed that, for any graph <i>G</i>, we can extend the radio mean labelings of its diametral paths to the vertex set of <i>G</i> and obtain radio mean labelings of <i>G</i>. This insight forms the basis for an algorithm presented in this paper to obtain radio mean labels for a given graph <i>G</i> with <i>n</i> vertices and diameter <i>d</i>. The correctness and complexity of this algorithm are analyzed in detail. Radio mean labelings have been proposed for cryptographic key generation in previous works, and the algorithm presented in this paper is general enough to support similar applications across various graph structures.
format Article
id doaj-art-74a0fe31efe04b0eb4b4a6c1e347ed0d
institution DOAJ
issn 2227-7390
language English
publishDate 2025-06-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj-art-74a0fe31efe04b0eb4b4a6c1e347ed0d2025-08-20T03:16:50ZengMDPI AGMathematics2227-73902025-06-011313205710.3390/math13132057Radio Mean Labeling Algorithm, Its Complexity and Existence ResultsMeera Saraswathi0K. N. Meera1Yuqing Lin2Department of Mathematics, School of Physical Sciences, Amrita Vishwa Vidyapeetham, Kochi 682024, IndiaDepartment of Mathematics, Amrita School of Engineering, Amrita Vishwa Vidyapeetham, Bengaluru 560035, IndiaSchool of Information and Physical Sciences, College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW 2308, AustraliaRadio mean labeling of a connected graph <i>G</i> is an assignment of distinct positive integers to the vertices of <i>G</i> satisfying a mathematical constraint called radio mean condition. The maximum label assigned to any vertex of <i>G</i> is called the <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>p</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> of the radio mean labeling. The minimum <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>s</mi><mi>p</mi><mi>a</mi><mi>n</mi></mrow></semantics></math></inline-formula> of all feasible radio mean labelings of <i>G</i> is the radio mean number of <i>G</i>, denoted by <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>m</mi><mi>n</mi><mo>(</mo><mi>G</mi><mo>)</mo></mrow></semantics></math></inline-formula>. In our previous study, we proved that if <i>G</i> has order <i>n</i>, then <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><mrow><mi>r</mi><mi>m</mi><mi>n</mi><mrow><mo>(</mo><mi>G</mi><mo>)</mo></mrow><mo>∈</mo><mo>[</mo><mi>n</mi><mo>,</mo><mspace width="4pt"></mspace><mi>r</mi><mi>m</mi><mi>n</mi><mrow><mo>(</mo><msub><mi>P</mi><mi>n</mi></msub><mo>)</mo></mrow><mo>]</mo></mrow></semantics></math></inline-formula> where <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> is a path of order <i>n</i>. All graphs of diameters 1, 2 and 3 have the radio mean number equal to order <i>n</i>. However, they are not the only graphs on <i>n</i> vertices with radio mean number <i>n</i>. Graphs isomorphic to path <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msub><mi>P</mi><mi>n</mi></msub></semantics></math></inline-formula> are the graphs having the maximum diameter among the set of all graphs of order <i>n</i> and they possess the maximum feasible radio mean number. In this paper, we show that, for any integer in the range of achievable radio mean numbers, there always exists a graph of order <i>n</i> with the given integer as its radio mean number. This is approached by introducing a special type of tree whose construction is detailed in the article. The task of assigning radio mean labels to a graph can be considered as an optimization problem. This paper critiques the limitations of existing Integer Linear Programming (ILP) models for assigning radio mean labeling to graphs and proposes a new ILP model. The existing ILP model does not guarantee that the vertex labels are distinct, positive and satisfy the radio mean condition, prompting the need for an improved approach. We propose a new ILP model which involves <inline-formula><math xmlns="http://www.w3.org/1998/Math/MathML" display="inline"><semantics><msup><mi>n</mi><mn>2</mn></msup></semantics></math></inline-formula> constraints is the input graph’s order is <i>n</i>. We obtain a radio mean labeling of cycle of order 10 using the new ILP. In our previous study, we showed that, for any graph <i>G</i>, we can extend the radio mean labelings of its diametral paths to the vertex set of <i>G</i> and obtain radio mean labelings of <i>G</i>. This insight forms the basis for an algorithm presented in this paper to obtain radio mean labels for a given graph <i>G</i> with <i>n</i> vertices and diameter <i>d</i>. The correctness and complexity of this algorithm are analyzed in detail. Radio mean labelings have been proposed for cryptographic key generation in previous works, and the algorithm presented in this paper is general enough to support similar applications across various graph structures.https://www.mdpi.com/2227-7390/13/13/2057approximation algorithmchannel assignment problemgraph labelinginteger programmingradio labelingradio mean labeling
spellingShingle Meera Saraswathi
K. N. Meera
Yuqing Lin
Radio Mean Labeling Algorithm, Its Complexity and Existence Results
Mathematics
approximation algorithm
channel assignment problem
graph labeling
integer programming
radio labeling
radio mean labeling
title Radio Mean Labeling Algorithm, Its Complexity and Existence Results
title_full Radio Mean Labeling Algorithm, Its Complexity and Existence Results
title_fullStr Radio Mean Labeling Algorithm, Its Complexity and Existence Results
title_full_unstemmed Radio Mean Labeling Algorithm, Its Complexity and Existence Results
title_short Radio Mean Labeling Algorithm, Its Complexity and Existence Results
title_sort radio mean labeling algorithm its complexity and existence results
topic approximation algorithm
channel assignment problem
graph labeling
integer programming
radio labeling
radio mean labeling
url https://www.mdpi.com/2227-7390/13/13/2057
work_keys_str_mv AT meerasaraswathi radiomeanlabelingalgorithmitscomplexityandexistenceresults
AT knmeera radiomeanlabelingalgorithmitscomplexityandexistenceresults
AT yuqinglin radiomeanlabelingalgorithmitscomplexityandexistenceresults